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EXERCISES

Prove Theorems 96 and 97.

Prove Theorem 101.

Prove Theorems 103 and 104.

Give a simple counterexample to show that in general it is not the case that

AUBXC)=(AXBUA XO).

5. Is the Cartesian product operation associative? If so, prove it. If not,
give a counterexample.

6. Prove that

P 00 =

AXNB= N (4X0).
CEB

§ 2.9 Axiom of Regularity. It is difficult to think of a set which
might reasonably be regarded as a member of itself. Certainly the set of
all men, for example, is not a man and is therefore not a member of itself.
Perhaps it might be argued that in intuitive set theory the set of all abstract
objects or the set of all sets should provide an example of a set which is a
member of itself, but as we saw in the first chapter, the set of all sets is
itself a paradoxical concept.

These remarks suggest we take as an axiom:

(1) AgA.

However, the assumption of (1) would not prohibit the counterintuitive
situation of there being distinct sets 4 and B such that

(2) Ac B& B A.

(If you do not believe (2) is counterintuitive, try to give a simple example
of sets A and B satisfying (2).) Furthermore, if we took (2) as an axiom,
longer counterintuitive cycles of membership would not be ruled out — like
the existence of distinet sets 4, B, and C such that

(3) AcB&Bec(C&CcA.

We prevent such cycles of any length n by adopting an axiom which is,
on the assumption of our other axioms, including the axiom of choice,
equivalent to the non-existence of infinite descending sequences of sets
(i.e., A;+1€ A;). The form of the axiom which we adopt, the axiom of
regularity, is due to Zermelo [1930], although an essentially equivalent
but more complicated axiom was given earlier in von Neumann [1929,
p. 231]*

A#0—- (A)zc A& (Vy)lyez—yag Al

*The essential idea was formulated even earlier in von Neumann [1925, p. 239] and
prior to that in Mirimanoff [1917].
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This axiom was called by Zermelo the Aziom der Fundierung. Intuitively
it says that given any non-empty set A there is a member z of A such that
the intersection of A and z is empty. The part (Vy)y€xz—yg A)
which expresses that the intersection of A and z is empty has not been
replaced by the simpler appearing formula ‘A N z = 0’ because of the
conditional definition of intersection; for if z is an individual, the definition
assigns no intuitive meaning to the intersection of z and any other object.
When it is clear that  must be a set, we use the simpler formula in proofs.

We now use the axiom of regularity to prove (1) and the negation of
(2) as theorems.

THEOREM 105. A ¢ A.

PROOF. Suppose that A is a set such that A € A. Since 4 € {4},
we then have

(1) Ac {A}nA.
By virtue of the axiom of regularity there is an z in {A} such that
{Alnz =0,
but since {A} is a unit set,
rz=A,
and thus
{A} N4 =0,

which contradicts (1). Q.E.D.
THEOREM 106. ~(A € B& B € A).
PROOF. Supposethat A ¢ B& B < A. Then

(1) Ac{AB} nBand B¢ {A,B} nA.
By the axiom of regularity there is an z in {4,B} such that
{AB} nz=0

and by Theorem 43
xr=A4 or z=B0B.
Hence
{A,B} N4 =0 or {AB} NnB =0,

which contradicts (1). Q.E.D.
The proof of Theorem 106 proceeded exactly as did that of the previous

theorem. Proof of the impossibility of a cycle of three or more sets proceeds
similarly.
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As an example of the kind of theorem for which the axiom of regularity
is essential, we may prove a theorem about Cartesian products which may
seem intuitively obvious, but which cannot be proved on the basis of only
the axioms introduced earlier.

THEOREM 107. AC A X A—A =0.

PROOF. Since by hypothesis 4 is a subset of A X A4, from the definition
of Cartesian product we know that if z€ A then there are elements z and
y such that

(1) z = {z,y) = {{z}, {z,y}}
and
(2) z€ A&yc A.

Suppose now contrary to the theorem that A = 0. Let us apply the axiom
of regularity to AUUA; whence there is a non-empty set C such that

CcAuUA
and

3) C n(4duUA=0.

That C must be a non-empty set, and not the empty set or an individual,
follows from (1) — the elements of both A and UA must be non-empty
sets. Suppose now that C € A. Then by Theorem 62, C & U A and since
C is non-empty, we must have

C nUA =0,

which contradicts (3). Thus C must be in UA, but on the basis of (1),
there are elements x and y such that

C = {z}V C = {zy}
and on the basis of (2), z,y € A, whence in either case

C NA#0,

which also contradicts (3), and proves that our supposition that A = 0
is false. Q.E.D.

Even though the axiom of regularity has very natural consequences
and imposes, as Zermelo remarked in his 1930 paper, a condition which will
be satisfied in all practical applications, it is possible to construct systems
of set theory which contradict this axiom. Two examples are Lesniewski’s
system of ontology (for a good account see Slupecki [1955]) and the system
of Quine [1940].
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EXERCISES

1. Prove that for all sets 4, B, and C it is not the case that
ACB&BCC&CC A.

2. Prove thatif A = A X Bthen A = 0.

3. Prove that if 2 X B 0 then there is a € in A X B such that (UC) N
(A X B) =0.

4. Prove an analogue of Theorem 46 for the following definition of ordered
pairs:

(zy) = {=, {zy}}-

§ 2.10 Summary of Axioms. For convenient subsequent reference
we summarize here the six non-redundant axioms introduced in this chapter.
The union axiom is omitted because it was shown in $2.6 that it follows
from the axiom of extensionality, the pairing axiom, and the sum axiom.
These six axioms suffice for all developments in Chapter 3, which is con-
cerned with relations and functions.

Aziom of Extensionality:
(V) (x€ A—>xc B)— A = B.
Axiom Schema of Separation:
(AB)(Wz)(zx € Bz € A & o(x)).
Pairing Aziom:
(AYV2)c Aoz=2V 2 =y).

Sum Aziom:
(AC)(V2)(z€ C - (AB)(x € B& B A)).
Power Set Axiom:
(AB)(VC)(C€ B C C A).
Aziom of Regularity:
A#0— Az A& (Vy)(yer—ya A)l



