Première épreuve

Olivier HALGAND

Partie I

1. Nous allons démontrer les contraposées, à savoir :

les boules fermées B(a,1) et B(a',1) ne sont pas disjointes si, et seulement si : $||a-a'|| \ge 2$.

• Condition suffisante (\Rightarrow): Supposons que les boules fermées B(a,1) et B(a',1) ne soient pas disjointes, et considérons $x \in B(a,1) \cap B(a',1)$.

On a donc : $||x - a|| \ge 1$ et $||x - a'|| \le 1$. On en déduit, grâce à l'inégalité triangulaire :

$$||a - a'|| = ||(a - x) + (x - a')|| \le ||a - x|| + ||x - a'|| \le 2.$$
 (*)

• Condition nécessaire (\Leftarrow): Supposons que $||a-a'|| \le 2$, et notons: $x=\frac{1}{2}(a+a')$. Alors:

$$x - a = -\frac{1}{2}(a - a')$$
 donc: $||x - a|| = \frac{1}{2}||a - a'|| \le 1$, donc: $x \in B(a, 1)$.

De la même manière, on a aussi $x \in B(a',1)$ et donc : $x \in B(a,1) \cap B(a',1)$, ce qui prouve que les deux boules ne sont pas disjointes.

Donc:

les boules fermées B(a,1) et B(a',1) sont disjointes si, et seulement si : ||a-a'|| > 2.

2. • Condition suffisante (\Rightarrow): Supposons que les deux boules soient tangentes. Elles ne sont donc pas disjointes, et ainsi $||a-a'|| \le 2$ d'après la question précédente et $\frac{1}{2}(a+a') \in \mathcal{B}(a,1) \cap B(a',1)$. Supposons alors que d=||a-a'|| < 2, et considérons $x=\frac{a+(d-1)a'}{d}$. Nous allons montrer que $x \in B(a,1) \cap B(a',1)$ et puisque $x \neq \frac{1}{2}(a+a')$ cela impliquera que les deux boules ont au moins deux points communs, et donc qu'elles ne sont pas tangentes.

D'une part :

$$x - a = \frac{a + (d - 1)a'}{d} - a = \frac{1 - d}{d}(a - a')$$
 donc : $||x - a|| = |1 - d| < 1$ donc : $x \in B(1, a)$;

d'autre part :

$$x - a' = \frac{a + (d - 1)a'}{d} - a' = \frac{1}{d}(a - a')$$
 donc : $||x - a'|| = 1$ donc : $x \in B(1, a')$.

On obtient donc bien : ||a - a'|| = 2.

• Condition nécessaire (\Leftarrow): Supposons que ||a-a'|| = 2 et considérons $x \in B(a,1) \cap B(a',1)$. Nous sommes alors dans le cas d'égalité de l'inégalité triangulaire (\star) précédente, ce qui signifie que ||a-x|| = ||x-a'|| = 1, et que les vecteurs a-x et x-a' sont positivement proportionnels :

$$\exists \lambda \in \mathbb{R}_+, a - x = \lambda(x - a').$$

On en déduit donc que $\lambda = 1$ et donc que : $x = \frac{1}{2}(a + a')$. Ainsi, les deux boules B(a, 1) et B(a', 1) n'ont qu'un point d'intersection, c'est-à-dire qu'elles sont tangentes.

On obtient donc bien:

les boules fermées B(a,1) et B(a',1) sont tangentes si, et seulement si : ||a-a'||=2 et dans ce cas leur point d'intersection est $\frac{1}{2}(a+a')$.

- **3.** Puisque les deux boules B(0,1) et B(a,1) sont tangentes, on a, d'après la question précédente : ||a|| = 2, et de même : ||a'|| = 2. De plus, on a : $b = \frac{1}{2}a$ et $b' = \frac{1}{2}a'$, donc : ||b|| = ||b'|| = 1.
 - On en déduit donc, d'après 1. :

$$B(a,1)\cap B(a',1)=\varnothing\quad\Leftrightarrow\quad \|a-a'\|>2\quad\Leftrightarrow\quad \|2b-2b'\|=\|2(b-b')\|>2\quad\Leftrightarrow\quad \|b-b'\|>1.$$

Or:

$$||b - b'||^2 = (b - b') \cdot (b - b') = ||b||^2 - 2b \cdot b' + ||b'||^2 = 2 - 2b \cdot b'.$$

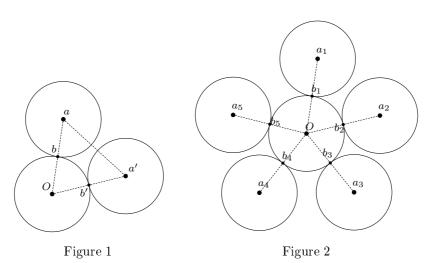
Donc:

$$B(a,1)\cap B(a',1)=\varnothing\quad\Leftrightarrow\quad 2-2b\cdot b'>1\quad\Leftrightarrow\quad b\cdot b'<\frac{1}{2}.$$

les boules fermées B(a,1) et B(a',1) sont disjointes si, et seulement si : $b \cdot b' < \frac{1}{2}$.

• De plus : B(a,1) et B(a',1) sont tangentes si, et seulement si : ||a-a'|| = 2,si, et seulement si : ||b-b'|| = 1 = ||b|| = ||b'||. Donc :

les boules fermées B(a,1) et B(a',1) sont tangentes si, et seulement si, le triangle 0bb' est équilatéral.



4. En utilisant les notations de la question précédente, les deux boules B(a,1) et B(a',1) sont disjointes si, et seulement si :

$$b \cdot b' = ||b|| \cdot ||b'|| \cdot \cos \widehat{b0b'} = \cos \widehat{b0b'} < \frac{1}{2} \quad \text{donc} : \quad \widehat{b0b'} > \frac{\pi}{3}.$$

Considérons des boules tangentes ou disjointes $B(a_1,1), B(a_2,1), \ldots$, toutes tangentes à B(0,1) en b_1, b_2, \ldots respectivement comme illustré sur la figure 2 ci-dessus. Alors : $\widehat{b_10b_2} \geqslant \frac{\pi}{3}, \widehat{b_20b_3} \geqslant \frac{\pi}{3}, \ldots$ Donc :

$$\widehat{b_1 0 b_2} + \widehat{b_2 0 b_3} + \widehat{b_3 0 b_4} + \widehat{b_4 0 b_5} + \widehat{b_5 0 b_6} + \widehat{b_6 0 b_1} \geqslant 6 \times \frac{\pi}{3} = 2\pi.$$

On en déduit donc que : $\tau_2 \le 6$. Enfin, si les triangles précédents sont deux à deux tangents (dans l'ordre de la numération) alors cette somme vaut 2π . Donc :

$$\tau_2=6.$$

5. (a) Déterminons le cardinal de A. Tout élément de A vérifie : $\prod_{i=1}^{8} x_i > 0$, ce qui signifie qu'il existe un nombre pair de coordonnées x_i négatives. De plus, il y a $\binom{8}{k}$ points de A ayant k coordonnées x_i négatives. Donc :

$$\operatorname{Card}(A) = \binom{8}{0} + \binom{8}{2} + \binom{8}{4} + \binom{8}{6} + \binom{8}{8} = 1 + 28 + 70 + 28 + 1 = 128.$$

Calculons maintenant le cardinal de B. Tout élément de B possède 6 coordonnées nulles parmi les 8, les deux autres valant $\pm \frac{\sqrt{2}}{2}$. Donc :

$$Card(B) = {6 \choose 8} \times 2^2 = 28 \times 4 = 112.$$

Enfin, puisque A et B sont disjoints on a :

$$Card(C) = Card(A) + Card(B) = 240.$$

De plus:

$$\forall x \in A, \quad ||x||^2 = \sum_{i=1}^8 x_i^2 = 8 \times \left(\frac{\sqrt{2}}{4}\right)^2 = 8 \times \frac{1}{8} = 1 \quad \text{donc}: \quad x \in S_7;$$

et:

$$\forall x \in B, \quad ||x||^2 = \sum_{i=1}^8 x_i^2 = 2 \times \left(\frac{\sqrt{2}}{2}\right)^2 = 2 \times \frac{1}{2} = 1 \quad \text{donc}: \quad x \in S_7.$$

On en déduit donc que :

$$C = A \cup B \subset S_7$$
.

(b) • Cas de deux éléments de A: puisque $x \neq y$, il existe $i \in [1,8]$ tel que : $x_iy_i < 0$. Supposons que $x_i > 0$ et $y_i < 0$. Si toutes les autres coordonnées sont deux à deux égales, alors on aurait :

$$\prod_{k=1}^{8} x_k y_k = x_i y_i \left(\prod_{\substack{1 \leqslant k \leqslant 8 \\ k \neq i}} x_k^2 \right) < 0,$$

ce qui est impossible puisque $\prod_{i=1}^8 x_i > 0$ et $\prod_{i=1}^8 y_i > 0$. On en déduit donc qu'il existe deux entiers distincts i et j de $[\![1,8]\!]$ tels que : $x_iy_i = x_jy_j < 0$. On a alors :

$$x \cdot y = \sum_{k=1}^{8} x_k y_k \leqslant \sum_{\substack{1 \leqslant k \leqslant 8 \\ k \notin \{i,j\}}} x_k^2 + x_i y_i + x_j y_j = \sum_{k=1}^{6} \left(\frac{\sqrt{2}}{4}\right)^2 - 2\left(\frac{\sqrt{2}}{4}\right)^2 = 4 \times \frac{1}{8} = \frac{1}{2}.$$

• Cas de deux éléments de B: puisque $x \neq y$, on ne peut avoir qu'un indice $i \in [1, 8]$ tel que x_i et y_i soient non nuls et de même signe. Donc:

$$x \cdot y \leqslant \left(\frac{\sqrt{2}}{2}\right)^2 + 7 \times 0 = \frac{1}{2}.$$

• Cas d'un élément $x \in A$ et d'un élément $y \in B$: Puisque y a alors 6 coordonnées nulles, on a :

$$x \cdot y \leqslant 2 \times \left(\frac{\sqrt{2}}{4} \cdot \frac{\sqrt{2}}{2}\right) = \frac{1}{2}.$$

On a donc :

$$\forall (x,y) \in C, \quad x \cdot y \leqslant \frac{1}{2}.$$

(c) D'après ce qui précède, si x et y sont deux éléments distincts de C, alors $x \cdot y \leq \frac{1}{2}$, ce qui signifie que les boules tangentes à B(0,1) en x et y sont disjointes ou tangentes. Et comme $\operatorname{Card}(C) = 240$, on en déduit donc que :

 $\tau_8 \geqslant 240$.

6. Pour tout $x\mathbb{R}^n$, on a les égalités :

$$\|\sigma(x)\|^2 = \sigma(x) \cdot \sigma(x) = x \cdot {}^t\sigma\sigma(x) = x \cdot x = \|x\|^2.$$

Donc:

$$\forall x \in B(0,1), \quad \sigma(x) \in B(0,1).$$

7. L'application t_{σ} est la restriction de σ à B(0,1), donc c'est une application linéaire. Comme \mathbb{R}^n est de dimension finie, t_{σ} est donc de classe $\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$ sur B(0,1). Donc, par composée de fonctions de classe \mathscr{C}^2 :

 $f \circ t_{\sigma} \in C_n$.

Notons $A=(a_{jk})_{1\leqslant j,k\leqslant n}$ la matrice de t_{σ} dans la base canonique de \mathbb{R}^n et, pour $x\in B(0,1)$, $t_{\sigma}(x)=(y_1,\ldots,y_n)\in B(0,1)$. Alors on peut écrire :

$$\forall j \in [1, n], \quad y_j = \sum_{k=1}^n a_{jk} x_k.$$

On en déduit donc que : $\frac{\partial t_{\sigma}}{\partial x_i}(x) = (a_{1i}, a_{2i}, \dots, a_{ni}).$

De plus, pour tout $i \in [1, n]$:

$$\frac{\partial (f \circ t_{\sigma})}{\partial x_{i}} = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial y_{j}} \circ t_{\sigma} \right) \left[\frac{\partial t_{\sigma}}{\partial x_{i}}(x) \right]_{j} = \sum_{j=1}^{n} a_{ji} \left(\frac{\partial f}{\partial y_{j}} \circ t_{\sigma} \right).$$

De la même manière, on a donc :

$$\frac{\partial^2 (f \circ t_{\sigma})}{\partial x_i^2} = \sum_{j=1}^n a_{ji} \left[\sum_{k=1}^n a_{ki} \left(\frac{\partial^2 f}{\partial y_j \, \partial y_k} \circ t_{\sigma} \right) \right].$$

On a donc :

$$\Delta(f \circ t_{\sigma}) = \sum_{i=1}^{n} \frac{\partial^{2}(f \circ t_{\sigma})}{\partial x_{i}^{2}} = \sum_{1 \leq i, j, k \leq n} a_{ji} a_{ki} \left(\frac{\partial^{2} f}{\partial y_{j} \partial y_{k}} \circ t_{\sigma} \right)$$

d'où:

$$\Delta(f \circ t_{\sigma}) = \sum_{1 \leq j,k \leq n} \left(\frac{\partial^2 f}{\partial y_j \, \partial y_k} \circ t_{\sigma} \right) \left[\sum_{i=1}^n a_{ji} a_{ki} \right].$$

Or, l'expression entre crochets représente le produit scalaire de deux vecteurs colonnes de la matrice orthogonale A: elle vaut donc δ_{jk} (symbole de Kronecker), c'est-à-dire 0 si $j \neq k$ et 1 si j = k. On obtient donc:

$$\Delta(f \circ t_{\sigma}) = \sum_{1 \leqslant j,k \leqslant n} \left(\frac{\partial^2 f}{\partial y_j \, \partial y_k} \circ t_{\sigma} \right) \delta_{jk} = \sum_{j=1}^n \left(\frac{\partial^2 f}{\partial y_j^2} \circ t_{\sigma} \right) = \left(\sum_{j=1}^n \frac{\partial^2 f}{\partial y_j^2} \right) \circ t_{\sigma},$$

soit:

$$\Delta(f \circ t_{\sigma}) = (\Delta f) \circ t_{\sigma}.$$

8. • Soit $\alpha \in \mathbb{N}^n$ tel que : $\alpha_1 + \cdots + \alpha_n = k$. On a donc, avec les notations précédentes :

$$\forall x \in B(0,1), \quad x^{\alpha} \circ t_{\sigma}(x) = \left(t_{\sigma}(x)\right)^{\alpha} = \prod_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} x_{j}\right)^{\alpha_{i}}.$$

Ainsi, $x^{\alpha} \circ t_{\sigma}(x)$ est une combinaison linéaire des $x_i^{\alpha_i}$. De plus, l'expression entre parenthèse est une fonction polynomiale homogène de degré α_i , ce qui permet d'affirmer que, par produit, $x^{\alpha} \circ t_{\sigma}$ est

une fonction polynomiale où chaque terme est de degré $\alpha_1 + \ldots + \alpha_n = k$. Donc : $x^{\alpha} \circ t_{\sigma} \in M_k$. Par combinaison linéaire , on en déduit que :

$$f \in M_k \quad \Rightarrow \quad f \circ t_\sigma \in M_k.$$

 \bullet De plus, si $\Delta f=0$ alors, d'après 7., $\Delta(f\circ t_\sigma)=(\Delta f)\circ t_\sigma=0.$ Donc :

$$f \in H_k \quad \Rightarrow \quad f \circ t_\sigma \in H_k.$$

9. Soient $f, g \in C_n$ et $\sigma \in G$. Alors :

$$\langle f \circ t_{\sigma} \mid g \circ t_{\sigma} \rangle = \left(\int_{B(0,1)} dx_1 \dots dx_n \right)^{-1} \int_{B(0,1)} \left(f \circ t_{\sigma}(x) \right) \left(g \circ t_{\sigma}(x) \right) dx_1 \dots dx_n.$$

Effectuons le changement de variable : $y = t_{\sigma}(x)$, de sorte que : $dy_1 \dots dy_n = |\det(t_{\sigma})| dx_1 \dots dx_n$, avec $\det(t_{\sigma}) = \pm 1$. Et de plus, on a vu en **6.** que :

$$\forall x \in B(0,1), \forall \sigma \in G, \ \sigma(x) \in B(0,1)$$
 et de même pour σ^{-1} ,

donc on en déduit que : $\sigma(B(0,1)) = B(0,1)$. On obtient donc :

$$\langle f \circ t_{\sigma} \mid g \circ t_{\sigma} \rangle = \left(\int_{B(0,1)} dx_1 \dots dx_n \right)^{-1} \int_{B(0,1)} f(y)g(y) dy_1 \dots dy_n = \langle f \mid g \rangle.$$

10. (a) Soient $x, y \in B(0,1)$ tels que ||x|| = ||y||. Alors, il existe une rotation $\sigma \in G$ telle que : $y = \sigma(x) = t_{\sigma}(x)$. On peut donc écrire :

$$f(y) = f(t_{\sigma}(x)) = f \circ t_{\sigma}(x).$$

Or, $f \circ t_{\sigma} = f$ par hypothèse, donc :

$$\forall x, y \in B(0, 1), \quad ||x|| = ||y|| \quad \Rightarrow \quad f(x) = f(y).$$

(b) D'une part : $\forall t \in [-1,1], \|(0,\ldots,0,t)\| = \sqrt{0^2 + \ldots + 0^2 + t^2} = |t| = \|(0,\ldots,0,|t|)\|$, et : $(0,\ldots,0,t) \in B(0,1)$. Donc d'après **10.(a)** :

$$f(0,\ldots,0,t) = f(0,\ldots,0,|t|),$$

soit:

$$\forall t \in [-1, 1], \quad g(t) = g(|t|).$$

Et d'autre part, pour tout $x \in B(0,1)$: $||x|| = ||(0,\ldots,0,||x||)||$, et donc, toujours d'après **10.(a)**:

$$\forall x \in B(0,1), \quad f(x) = g(||x||).$$

(c) • On a donc:

$$\forall x \in B(0,1), -x \in B(0,1)$$
 et: $f(-x) = g(||-x||) = g(||x||) = f(x),$

donc l'application f est paire. Donc, nécessairement :

$$k = \alpha_1 + \ldots + \alpha_n$$
 est pair.

• Puisque $f \in M_k$ n'est pas nulle, il existe une famille $(\alpha^{(i)})_{1 \leqslant i \leqslant p}$ d'éléments de \mathbb{N}^n deux à deux distincts vérifiant : $\forall i \in [\![1,p]\!], \alpha_1^{(i)} + \ldots + \alpha_n^{(i)} = k$, et une famille de réels non nuls $(\lambda_i)_{1 \leqslant i \leqslant p}$ telle que f s'écrive sous la forme :

$$f = \sum_{i=1}^{p} \lambda_i x^{\alpha^{(i)}}, \text{ soit : } \forall x \in B(0,1), f(x) = \sum_{i=1}^{p} \lambda_i x_1^{\alpha_1^{(i)}} \dots x_n^{\alpha_n^{(i)}}.$$

Soit $x \in B(0,1)$ tel que : $f(x) \neq 0$. Puisque $||x|| = ||(0,\ldots,0,||x||)||$, on a d'après $\mathbf{10.(a)}$: $f(x) = f(0,\ldots,0,||x||) \neq 0$ et il donc existe $j \in [\![1,p]\!]$ tel que : $\alpha_n^{(j)} = k$ et $\alpha_1^{(j)} = \ldots = \alpha_{n-1}^{(j)} = 0$. On obtient donc (en renommant λ_j en λ) : $f(x) = \lambda ||x||^k$.

Or, d'après **10.(a)** : $\forall y \in B(0,1), \|y\| = \|x\| \Rightarrow f(y) = f(x) = \lambda \|x\|^k = \lambda \|y\|^k$. On en déduit donc que :

$$\forall y \in B(0, ||x||), \quad f(y) = \lambda \left(\sqrt{y_1^2 + \ldots + y_n^2}\right)^k = \lambda \left(y_1^2 + \ldots + y_n^2\right)^{\frac{k}{2}}.$$

Or, la boule B(0, ||x||) contient une infinité de points, et les familles $(\alpha^{(i)})_{1 \leqslant i \leqslant p}$ et $(\lambda_i)_{1 \leqslant i \leqslant p}$ sont finies. Donc cette égalité détermine entièrement les deux familles. On peut donc étendre l'égalité à la boule B(0,1) en entier :

$$\exists \lambda \in \mathbb{R}^*, \forall x \in B(0,1), \quad f(x) = \lambda ||x||^k.$$

Partie III

11. (a) Soit $P = \sum_{i=0}^{k} a_i X^i$ un polynôme de degré k de $\mathbb{R}[X]$. Si P s'annule sur l'intervalle]-s,s[(avec s>0), alors P possède une infinité de racines. Or, d'après le théorème de d'Alembert, si P n'est pas nul, il possède au plus k racines dans \mathbb{R} . Donc, P=0, c'est-à-dire:

$$\forall i \in [0, k], \quad a_i = 0.$$

- (b) On fixe $k \ge 0$, et on raisonne par récurrence sur n. On notera $I_n = (\alpha^{(i)})$ l'ensemble des éléments de \mathbb{N}^n tels que : $\alpha_1^{(i)} + \ldots + \alpha_n^{(i)} \le k$, et $c_n = \operatorname{Card}(I_n)$.
- Initialisation : Pour n = 1, alors : $(x^{\alpha}) = (x^0, \dots, x^k)$. On reconnaît les fonctions polynomiales associées à la base canonique de $\mathbb{R}_k[X]$: la famille est donc libre.
- **Hérédité** : Supposons que la famille $(x^{\alpha})_{\alpha \in I_n}$ est libre, n étant un entier naturel non nul donné. On considère alors la famille $(x^{\alpha})_{\alpha \in I_{n+1}}$, et une famille $(\lambda_i)_{i \in I_{n+1}}$ de réels telle que : $\sum_{i=1}^{c_{n+1}} \lambda_i \, x^{\alpha^{(i)}} = 0$. On a donc :

$$\forall x \in B(0,1), \quad \sum_{i=1}^{c_{n+1}} \lambda_i \, x_1^{\alpha_1^{(i)}} \dots x_n^{\alpha_n^{(i)}} x_{n+1}^{\alpha_{n+1}^{(i)}} = 0.$$

Fixons x_1, \ldots, x_n tels que : $x_1^2 + \ldots + x_n^2 < 1$. Alors :

$$x \in B(0,1)$$
 \Leftrightarrow $x_{n+1}^2 \le 1 - (x_1^2 + \dots + x_n^2) = s^2$, avec : $s > 0$.

Considérons alors le polynôme $P = \sum_{j=0}^{k} a_j X^j$ où : a_j est obtenu en regroupant les termes où $\alpha_{n+1}^{(i)} = j$,

c'est-à-dire les termes $\lambda_i \, x_1^{\alpha_n^{(i)}} \dots x_n^{\alpha_n^{(i)}}$ vérifiant : $\alpha_1^{(i)} + \dots + \alpha_n^{(i)} \leqslant k-j$. Ce polynôme P s'annule sur]-s,s[et donc, d'après $\mathbf{11.(a)}: \forall j \in \llbracket 0,k \rrbracket, \ a_j=0$. On en déduit donc que :

$$\forall j \in [0, k], \quad a_j = \sum_{\substack{1 \leqslant i \leqslant c_{n+1} \\ \alpha_1^{(i)} + \dots + \alpha_n^{(i)} \leqslant k - j}} \lambda_i \, x_1^{\alpha_1^{(i)}} \dots x_n^{\alpha_n^{(i)}} = 0.$$

Or, $\alpha_1^{(i)} + \ldots + \alpha_n^{(i)} \leqslant k - j \leqslant k$. On peut donc utiliser l'hypothèse de récurrence, qui permet de conlure que $\forall i \in [\![1,c_{n+1}]\!], \lambda_i = 0$, et donc la famille $(x^\alpha)_{\alpha \in I_{n+1}}$ est libre.

• Conclusion : D'après le principe de récurrence,

$$\forall k \in \mathbb{N}, \forall n \in \mathbb{N}^*, \text{ la famille } (x^{\alpha})_{\alpha \in I_n} \text{ est libre.}$$

(c) Pour $k \in \mathbb{N}$ et $n \in \mathbb{N}^*$, il existe un nombre fini non nul $N_{k,n}$ de n-uplets $\alpha \in \mathbb{N}^n$ tels que : $\alpha_1 + \ldots + \alpha_n = k$. En effet, d'une part : $k = k + 0 + \ldots + 0$ donc $N_{k,n} \neq 0$, et $\forall i \in [1, n], \alpha_i \leq k$ donc $N_{k,n} \leq k^n$.

De plus, d'après la question précédente, la famille des $(x^{\alpha})_{\substack{\alpha \in \mathbb{N}^n \\ \alpha_+ \ldots + \alpha_n = k}}$ est libre et engendre l'ensemble M_k . Donc :

 $M_k = Vect(x^{\alpha})$ est un sous-espace vectoriel de dimension finie $N_{k,n}$ de C_n .

12. L'ensemble K est le stabilisateur de e_n ; c'est donc un sous-groupe de G. De plus, matriciellement, $\sigma \in K$ s'écrit sous la forme (puisque $\sigma(e_n) = e_n$):

$$S = \begin{pmatrix} & & & 0 \\ & \vdots & & \vdots \\ & & & 0 \end{pmatrix} \quad \text{avec} : \quad A \in \mathcal{M}_{n-1}(\mathbb{R}) \\ & L_{n-1} = 1 \end{pmatrix}.$$

Alors:

$${}^{t}S.S = \begin{pmatrix} & {}^{t}A & & {}^{t}L_{n-1} \\ \hline 0 & \dots & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} & & & 0 \\ & A & & \vdots \\ \hline & L_{n-1} & & 1 \end{pmatrix} = \begin{pmatrix} & {}^{t}A.A & & {}^{t}L_{n-1} \\ \hline & L_{n-1} & & 1 \end{pmatrix}.$$

Or, puisque $\sigma \in G$, on a : ${}^tS.S = I_n$ et donc : ${}^tA.A = I_{n-1}$ et $L_{n-1} = 0$. Ainsi, les éléments de K s'écrivent matriciellement sous la forme : $\begin{pmatrix} & & 0 \\ & A & \vdots \\ & & 0 \\ \hline 0 & \dots & 0 & 1 \end{pmatrix} \text{ avec } A \in \mathcal{O}_{n-1}(\mathbb{R}), \text{ qui est clairement isomorphe à } \mathcal{O}_{n-1}(\mathbb{R}). \text{ Donc :}$

K est un sous-groupe de G isomorphe à $\mathcal{O}_{n-1}(\mathbb{R})$.

13. • Démontrons l'injectivité : soit $(c_0, \ldots, c_{\lfloor k/2 \rfloor}) \in Ker(\varphi)$. Alors :

$$\forall (x_1, \dots, x_n) \in B(0,1), \quad \sum_{j=0}^{\lfloor k/2 \rfloor} c_j (x_1^2 + \dots + x_{n-1}^2)^j x_n^{k-2j} = 0.$$

Si on se fixe x_1, \ldots, x_{n-1} tels que : $0 < x_1^2 + \ldots + x_{n-1}^2 = 1 - s^2 < 1$ (avec s > 0), alors on obtient : $(x_1, \ldots, x_n) \in B(0, 1) \Leftrightarrow x_n^2 \leqslant s^2 \Leftrightarrow x_n \in [-s, s]$. Et donc :

$$\forall x_n \in]-s, s[, \quad \sum_{j=0}^{[k/2]} c_j (1-s^2)^j x_n^{k-2j} = 0.$$

Donc, comme en **11.(a)**, on en déduit que : $\forall j \in [0, [k/2]], c_j (1-s^2)^j = 0$, et donc : $c_j = 0$. Ainsi, $ker(\varphi) = 0$ et

φ est injective.

• Déterminons $Im(\varphi)$: Pour tout entier j, puisque $x_1^2+\ldots+x_{n-1}^2$ est un polynôme homogène de degré 2, donc $(x_1^2+\ldots+x_{n-1}^2)^jx_n^{k-2j}$ est un polynôme homogène de degré 2j+(k-2j)=k. On en déduit donc que, pour tout $(c_0,\ldots,c_{[k/2]})\in\mathbb{R}^{[k/2]+1},\, \varphi((c_0,\ldots,c_{[k/2]})$ est une combinaison linéaire de x^α avec $\alpha\in\mathbb{N}^n$ tel que : $\alpha_1+\ldots+\alpha_n=k$. On en déduit donc que $Im(\varphi)\subset M_k$.

 \Diamond Maintenant, soit $\sigma \in K$ et $f \in Im(\varphi)$. Alors, avec les notations de 7. et les résultats du 12., on peut écrire :

$$\forall x \in \mathcal{B}(0,1), \quad t_{\sigma}(x) = \left(\sum_{j=1}^{n-1} a_{1j} x_j, \dots, \sum_{j=1}^{n-1} a_{n-1,j} x_j, x_n\right).$$

Donc:

$$\forall x \in B(0,1), \quad f \circ t_{\sigma}(x) = \sum_{j=0}^{[k/2]} c_j \left[\left(\sum_{j=1}^{n-1} a_{1j} x_j \right)^2 + \ldots + \left(\sum_{j=1}^{n-1} a_{n-1,j} x_j \right)^2 \right]^j x_n^{k-2j}.$$

Or, avec les notations de 12. et $x' = (x_1, \dots, x_{n-1})$ on a (avec les notations matricielles) :

$$\left(\sum_{j=1}^{n-1} a_{1j} x_j\right)^2 + \ldots + \left(\sum_{j=1}^{n-1} a_{n-1,j} x_j\right)^2 = \left\|Ax'\right\|^2 = {}^tx'{}^tA.Ax' = {}^tx'I_{n-1}x' = {}^tx'.x' = \|x'\|^2.$$

Donc:

$$\forall x \in B(0,1), \quad f \circ t_{\sigma}(x) = \sum_{j=0}^{\lfloor k/2 \rfloor} c_j (x_1^2 + \ldots + x_{n-1}^2)^j x_n^{k-2j} = f(x).$$

On a donc:

 $\forall f \in Im(\varphi), f \in M_k \quad \text{et}: \quad \forall \sigma \in K, f \circ t_\sigma = f \quad \text{soit}: \quad Im(\varphi) \subset \big\{ f \in M_k, \forall \sigma \in K, f \circ t_\sigma = f \big\}.$

 \diamondsuit Réciproquement, soit $f\in M_k$ telle que : $\forall \sigma\in K, f\circ t_\sigma=f.$ Posons :

$$f = \sum_{j=0}^{p} \lambda_j x^{\alpha^{(j)}} = \sum_{j=0}^{p} \lambda_j x_1^{\alpha_1^{(j)}} \dots x_n^{\alpha_n^{(j)}}.$$

Pour tout $i \in [0, k]$, on pose $J_i = \{j \in [1, N_{k,n}], \alpha_n^{(j)} = i\}$ et:

$$\widetilde{f}_i: (x_1, \dots, x_{n-1}) \mapsto \sum_{j \in J_i} \lambda_j x_1^{\alpha_1^{(j)}} \dots x_{n-1}^{\alpha_{n-1}^{(j)}}.$$

Enfin, si $\sigma \in K$ a pour matrice S, on note $\widetilde{\sigma} \in \mathcal{O}_{n-1}(\mathbb{R})$ l'application de matrice A (comme dans 12.). On obtient alors que $\widetilde{f}_i \in M_{k-i}$ et $\widetilde{f}_i \circ t_{\widetilde{\sigma}} = \widetilde{f}_i$. On peut donc appliquer 10. : k-i est pair et

$$\exists \mu_i \in \mathbb{R}^*, \forall x \in B_{n-1}(0,1), \quad \widetilde{f}_i(x_1,\dots,x_{n-1}) = \mu_i \left(x_1^2 + \dots + x_{n-1}^2\right)^{\frac{k-i}{2}}.$$

On obtient donc:

$$f(x_1, \dots, x_n) = \sum_{\substack{0 \le i \le k \\ k-i \text{ pair}}} \mu_i (x_1^2 + \dots + x_{n-1}^2)^{\frac{k-i}{2}} x_n^i.$$

En posant le changement d'indice : $j = \frac{k-i}{2} \Leftrightarrow i = k-2j$ et $c_j = \mu_{k-2j}$, on obtient :

$$f(x_1, \dots, x_n) = \sum_{j=0}^{[k/2]} c_j (x_1^2 + \dots + x_{n-1}^2)^j x_n^{k-2j},$$

ce qui prouve que $f \in Im(\varphi)$.

Finalement, on a démontré que :

 φ est une application linéaire injective, dont l'image est : $Im(\varphi) = \{f \in M_k, \forall \sigma \in K, f \circ t_\sigma = f\}.$

14. (a) Par hypothèse :

$$\forall x \in B(0,1), \quad f(x) = \sum_{j=0}^{[k/2]} c_j (x_1^2 + \dots + x_{n-1}^2)^j x_n^{k-2j}.$$

Donc:

$$\forall i \in [1, n-1], \forall x \in B(0,1), \quad \frac{\partial f}{\partial x_i}(x) = \sum_{i=1}^{[k/2]} 2jc_jx_i(x_1^2 + \ldots + x_{n-1}^2)^{j-1}x_n^{k-2j},$$

et ainsi:

$$\frac{\partial^2 f}{\partial x_i^2}(x) = \sum_{j=1}^{[k/2]} 2jc_j \left(x_1^2 + \ldots + x_{n-1}^2\right)^{j-1} x_n^{k-2j} + \sum_{j=2}^{[k/2]} 4j(j-1)c_j x_i^2 \left(x_1^2 + \ldots + x_{n-1}^2\right)^{j-2} x_n^{k-2j}.$$

Donc:

$$\begin{split} \sum_{i=1}^{n-1} \frac{\partial^2 f}{\partial x_i^2}(x) &= (n-1) \sum_{j=1}^{[k/2]} 2j c_j \big(x_1^2 + \ldots + x_{n-1}^2 \big)^{j-1} x_n^{k-2j} \\ &\quad + \left(\sum_{i=1}^{n-1} x_i^2 \right) \left(\sum_{j=2}^{[k/2]} 4j (j-1) c_j \big(x_1^2 + \ldots + x_{n-1}^2 \big)^{j-2} x_n^{k-2j} \right) \\ &= \sum_{j=1}^{[k/2]} \left[2(n-1)j + 4j (j-1) \right] c_j \big(x_1^2 + \ldots + x_{n-1}^2 \big)^{j-1} x_n^{k-2j} \\ &= \sum_{j=1}^{[k/2]} 2j (n+2j-3) c_j \big(x_1^2 + \ldots + x_{n-1}^2 \big)^{j-1} x_n^{k-2j} \end{split}$$

On a aussi de manière immédiate :

$$\frac{\partial^2 f}{\partial x_n^2}(x) = \sum_{j=0}^{\lfloor k/2 \rfloor - 1} c_j (x_1^2 + \dots + x_{n-1}^2)^j (k-2j)(k-2j-1) x_n^{k-2j-2}$$

$$= \sum_{j=1}^{\lfloor k/2 \rfloor} c_{j-1} (x_1^2 + \dots + x_{n-1}^2)^{j-1} (k-2j+2)(k-2j+1) x_n^{k-2j}.$$

Et donc:

$$(\Delta f)(x) = \sum_{j=1}^{\lfloor k/2 \rfloor} \left[2j(n+2j-3)c_j + (k-2j+2)(k-2j+1)c_{j-1} \right] (x_1^2 + \ldots + x_{n-1}^2)^{j-1} x_n^{k-2j}.$$

(b) Par définition, $R_k = H_k \cap Im(\varphi)$; c'est donc un sous-espace vectoriel de H_k (en tant qu'intersection de sous-espaces vectoriels).

Considérons $f \in R_k$. Alors $\Delta(f) = 0$ et il existe $(c_0, \ldots, c_{\lfloor k/2 \rfloor}) \in \mathbb{R}^{\lfloor k/2 \rfloor + 1}$ tel que : $f = \varphi(c_0, \ldots, c_{\lfloor k/2 \rfloor})$. D'après la question précédente, on a donc :

$$\forall j \in [1, [k/2]], \quad \alpha_j c_j + \beta_j c_{j-1} = 0 \quad \text{avec}: \quad \alpha_j = 2j(n+2j-3) \quad \text{et}: \quad \beta_j = (k-2j+2)(k-2j+1).$$

De plus, $n\geqslant 2$ et $j\geqslant 1$, donc : $n+2j-3\geqslant 1$, ce qui implique que $c_j\neq 0$. On a donc : $\forall j\in [\![1,[k/2]]\!],\ c_j=-\frac{\beta_j}{\alpha_j}\,c_{j-1}$. Ainsi, les coefficients c_j forment une suite (finie) récurrente d'ordre 1, dépendant uniquement de c_0 . Donc :

 R_k est un sous-espace vectoriel de H_k de dimension 1.

(c) Puisque pour tout $j \in \llbracket 1, [k/2] \rrbracket$ onb a : $c_j \geqslant 1$ et $\beta_j > 0$, on en déduit que $-\frac{\beta_j}{\alpha_j} < 0$. Donc :

$$\forall j \in [1, [k/2]], \quad c_j c_{j-1} < 0.$$

De plus : $1-X^2$ est un polynôme de degré 2 de coefficient dominant -1, donc $(1-X^2)^j$ est un polynôme de degré 2j de coefficient dominant $(-1)^j$. Ainsi, chaque terme $c_j(1-X^2)^jX^{k-2j}$ est de degré k et de coefficient dominant $(-1)^jc_j$. Or, puisque pour tout $j:c_jc_{j-1}<0$, on a :

• si $c_0 > 0$, alors $c_j > 0$ si j est pair et $c_j < 0$ si j est impair. Donc $(-1)^j c_j > 0$ pour tout j. Ainsi, les coefficients dominants ne s'annulent pas.

• si $c_0 < 0$, alors $c_j < 0$ si j est pair et $c_j > 0$ si j est impair. Donc $(-1)^j c_j < 0$ pour tout j. Ainsi, les coefficients dominants ne s'annulent pas.

Finalement:

le polynôme
$$\sum_{j=0}^{[k/2]} c_j (1-X^2)^j X^{k-2j} \text{ est un un polynôme de degré } k.$$

15. (a) • Unicité: Supposons qu'il existe deux fonctions f_a et g_a dans H_k telles que:

$$\forall f \in H_k, \langle f \mid f_a \rangle = \langle f \mid g_a \rangle = f(a).$$

Alors: $\forall f \in H_k, \langle f \mid f_a - g_a \rangle = 0$, c'est-à-dire: $(f_a - g_a) \in H_k^{\perp}$. Or, $(f_a - g_a) \in H_k$ et $H_k \cap H_k^{\perp} = \{0\}$. Donc $f_a = g_a$.

• Existence: l'espace vectoriel M_k étant de dimension finie, il en est de même de son sous-espace vectoriel H_k . Considérons donc une base (u_1, \ldots, u_p) de H_k que l'on peut considérer orthonormale (ou qu'on orthonormalise à l'aide du procédé de Gram-Schmidt).

Soient $f, f_a \in H_k$: il existe des réels $\lambda_1, \ldots, \lambda_p, \mu_1, \ldots, \mu_p$ tels que :

$$f = \sum_{j=1}^{p} \lambda_j u_j$$
 et: $f_a = \sum_{j=1}^{p} \mu_j u_j$.

On a donc : $\langle f \mid f_a \rangle = \sum_{j=1}^p \lambda_j \mu_j$ et $f(a) = \sum_{j=1}^p \lambda_j u_j(a)$. En posant, pour tout $j \in [1, p], \mu_j = u_j(a)$, on obtient donc le résultat voulu.

On a donc démontré que :

$$\exists ! f_a \in H_k, \quad \forall f \in H_k, \quad \langle f \mid f_a \rangle = f(a).$$

(b) Soit $\sigma \in G$ tel que : $\sigma(a) = a$. D'après **9.**, σ est une bijection de B(0,1) sur B(0,1), donc on peut écrire : $(t_{\sigma})^1 = t_{\sigma^{-1}}$. De plus, d'après **8.**, si $f \in H_k \subset M_k$, alors $f \circ t_{\sigma} \in M_k$ et donc, d'après **9.** :

$$\langle f \mid f_a \circ t_{\sigma} \rangle = \langle f \circ (t_{\sigma})^{-1} \circ t_{\sigma} \mid f_a \circ t_{\sigma} \rangle = \langle f \circ t_{\sigma^{-1}} \mid f_a \rangle = f \circ t_{\sigma^{-1}}(a).$$

Et puisque $\sigma(a) = t_{\sigma}(a) = a$ on a : $t_{\sigma^{-1}}(a) = a$ et donc :

$$\langle f \mid f_a \circ t_\sigma \rangle = f(a).$$

D'après l'unicité de f_a , on en déduit donc que :

$$f_a \circ t_\sigma = f_a.$$

(c) • Unicité : Supposons qu'il existe deux polynômes p_k et q_k tels que :

$$\forall x \in S_{n-1}, f_{e_n}(x) = p_k(x_n) = q_k(x_n).$$

Alors : $\forall x \in S_{n-1}, (p_k - q_k)(x_n) = 0$, et donc : $\forall x_n \in]-1, 1[, (p_k - q_k)(x_n) = 0$, c'est-à-dire , d'après **11.(a)** : $p_k - q_k = 0$.

• Existence: Par définition, $f_{e_n} \in R_k \subset Im(\varphi)$. Donc, il existe $(c_0, \dots, c_{\lfloor k/2 \rfloor}) \in \mathbb{R}^{\lfloor k/2 \rfloor + 1}$ tel que: $f_{e_n} = \varphi(c_0, \dots, c_{\lfloor k/2 \rfloor})$. On a donc:

$$\forall (x_1, \dots, x_n) \in B(0, 1), \quad f_{e_n}(x_1, \dots, x_n) = \sum_{j=0}^{\lfloor k/2 \rfloor} c_j (x_1^2 + \dots + x_{n-1}^2)^j x_n^{k-2j}.$$

Or, puisque $x \in S_{n-1}$, on a : $x_1^2 + \ldots + x_{n-1}^2 + x_n^2 = 1$, et on obtient donc :

$$f_{e_n}(x_1, \dots, x_n) = \sum_{j=0}^{[k/2]} c_j (1 - x_n^2)^j x_n^{k-2j} = p_k(x_n)$$
 avec : $p_k = \sum_{j=0}^{[k/2]} c_j (1 - X^2)^j X^{k-2j}$.

Finalement:

$$\exists ! p_k \in \mathbb{R}[X], \quad \forall x \in S_{n-1}, \quad f_{e_n}(x) = p_k(x_n).$$

(d) Le polynôme p_k est de degré k et son coefficient dominant est du signe de c_0 d'après 14.(c). Or :

$$f_{e_n}(e_n) = f_{e_n}(0, \dots, 0, 1) = c_0$$
 et: $f_{e_n}(e_n) = \langle f_{e_n} | f_{e_n} \rangle = ||f_{e_n}||^2 > 0$.

Donc:

le polynôme p_k est un un polynôme de degré k de coefficient dominant $c_0>0$.

(e) • Soit $\sigma \in G$ tel que $\sigma(e_n) = a$. Alors, $\forall f \in H_k$,

$$\langle f \mid f_a \circ t_\sigma \rangle = \langle f \circ (t_\sigma)^{-1} \circ t_\sigma \mid f_a \circ t_\sigma \rangle = \langle f \circ t_{\sigma^{-1}} \mid f_a \rangle = f \circ t_{\sigma^{-1}}(a).$$

Et puisque $\sigma(e_n)=t_\sigma(e_n)=a$ on a : $t_{\sigma^{-1}}(a)=e_n$ et donc :

$$\langle f \mid f_a \circ t_\sigma \rangle = f(e_n).$$

D'après l'unicité de f_{e_n} , on en déduit donc que :

$$f_a \circ t_\sigma = f_{e_n}.$$

• De plus, si $x \in \mathbb{R}^n$, alors :

$$x \cdot a = x \cdot \sigma(e_n) = {}^t \sigma(x) \cdot e_n,$$

et puisque ${}^t\sigma=\sigma^{-1}$ car $\sigma\in G$, on conclut :

$$x \cdot a = \sigma^{-1}(x) \cdot e_n.$$

- (f) Voir 15.(a).
- (g) Soit $b \in S_{n-1}$. Alors, d'après 15.(f):

$$f_a(b) = \sum_i u_i(a)u_i(b) = f_b(a).$$

De plus, en utilisant les résultats précédents :

$$p_k(a \cdot b) = p_k(b \cdot a) = p_k(\sigma^{-1}(b) \cdot e_n) \qquad \text{d'après 15.(e)}$$

$$= f_{e_n}(\sigma^{-1}(b)) \qquad \text{d'après 15.(c)}$$

$$= f_{e_n} \circ t_{\sigma^{-1}}(b)$$

$$= (f_a \circ t_\sigma) \circ (t_\sigma)^{-1}(b) \qquad \text{d'après 15.(e)}$$

$$= f_a(b)$$

Donc:

$$\forall b \in S_{n-1}, \quad f_a(b) = f_b(a) = p_k(a \cdot b) = \sum_i u_i(a)u_i(b).$$

Partie IV

16. Le polynôme p_0 est de degré 0 (d'après 15.(d)), c'est-à-dire qu'il est constant. De plus, $M_0 = H_0$ est l'ensemble des fonctions constantes sur B(0,1). Si on note alors K_f la valeur constante prise par $f \in H_0$, alors : $\forall a \in S_{n-1}, \forall f \in H_0$, $\langle f \mid 1 \rangle = K_f = f(a) = \langle f \mid f_a \rangle$, et donc : $f_a = 1$ d'après l'unicité démontrée en 15.(a). En particulier, $f_{e_n} = 1$ et donc :

$$p_0 = 1.$$

17. • D'après **15.(c)**, on a :

$$p_1 = \sum_{j=0}^{[1/2]} c_j (1 - X^2)^j X^{1-2j} = c_0 (1 - X^2)^0 X = c_0 X.$$

Or, d'après 15.(d) le coefficient dominant est > 0, donc :

$$\exists \lambda_1 > 0, \quad p_1 = \lambda_1 X.$$

• De même :

$$p_1 = \sum_{j=0}^{\lfloor 2/2 \rfloor} c_j (1 - X^2)^j X^{2-2j} = c_0 (1 - X^2)^0 X^2 + c_1 (1 - X^2) = (c_0 - c_1) X^2 + c_1,$$

avec : $c_0 - c_1 > 0$ et $c_0 c_1 < 0$; on en déduit que $c_0 > 0$. De plus, d'après **14.0(a)** :

$$\alpha_1 = 2(n+2-3) = 2n-2$$
 et: $\beta_1 = (2-2+1)(2-2+2) = 2$, donc: $c_1 = -\frac{\beta_1}{\alpha_1}c_0 = -\frac{1}{n-1}c_0$.

On en déduit donc que : $c_0 - c_1 = c_0 + \frac{1}{n-1}c_0 = \frac{n}{n-1}c_0$. Ce qui donne :

$$p_2 = \frac{c_0}{n-1}(nX^2 - 1)$$
 avec : $c_0 > 0$.

18. Pour tout $k \in \mathbb{N}$, et d'après **15.**(g) :

$$\sum_{1 \leqslant i,j \leqslant m} p_k(v_i \cdot v_j) = \sum_{1 \leqslant i,j \leqslant m} \left(\sum_h u_h(v_i) u_h(v_j) \right)$$

$$= \sum_h \left(\sum_{1 \leqslant i \leqslant m} \left(\sum_{1 \leqslant j \leqslant m} u_h(v_i) u_h(v_j) \right) \right)$$

$$= \sum_h \left(\sum_{1 \leqslant i \leqslant m} u_h(v_i) \right) \left(\sum_{1 \leqslant j \leqslant m} u_h(v_j) \right)$$

$$= \sum_h \left(\sum_{1 \leqslant i \leqslant m} u_h(v_i) \right)^2$$

Donc:

$$\forall k \in \mathbb{N}, \quad \sum_{1 \leqslant i,j \leqslant m} p_k(v_i \cdot v_j) \geqslant 0.$$

19. • On peut donc écrire, d'une part :

$$\sum_{1\leqslant i,j\leqslant m} f(v_i\cdot v_j) = \sum_{1\leqslant i,j\leqslant m} \left(\sum_{h=0}^s a_h p_h(v_i\cdot v_j)\right) = \sum_{h=0}^s a_h \left(\sum_{1\leqslant i,j\leqslant m} p_h(v_i\cdot v_j)\right) \geqslant a_0 \sum_{1\leqslant i,j\leqslant m} p_0(v_i\cdot v_j),$$

puisque les a_h sont positifs par hypothèse, et d'après 18. : $\sum_{1 \leqslant i,j \leqslant m} p_h(v_i \cdot v_j) \geqslant 0 \text{ pour tout } h \in \mathbb{N}. \text{ De plus, comme } p_0 = 1 \text{ d'après 16., on a donc la minoration :}$

$$\sum_{1 \le i, j \le m} f(v_i \cdot v_j) \geqslant a_0 m^2.$$

• D'autre part, on a aussi d'après l'inégalité de Cauchy-Schwarz :

$$\forall i, j \in [1, m], \quad |v_i \cdot v_j| \leq ||v_i|| \, ||v_j|| = 1.$$

Donc, $-1 \leqslant v_i \cdot v_j \leqslant 1$. Ainsi, d'après l'hypothèse :

$$\forall i, j \in [1, m], \quad i \neq j \quad \Rightarrow \quad -1 \leqslant v_i \cdot v_j \leqslant \frac{1}{2}, \quad \text{donc} : \quad f(v_i \cdot v_j) \leqslant 0.$$

D'où:

$$\sum_{1\leqslant i,j\leqslant m} f(v_i\cdot v_j) = \sum_{1\leqslant i\leqslant m} f(v_i\cdot v_i) + \sum_{\substack{1\leqslant i,j\leqslant m\\i\neq j}} f(v_i\cdot v_j) = mf(1) + \sum_{\substack{1\leqslant i,j\leqslant m\\i\neq j}} f(v_i\cdot v_j) \leqslant mf(1).$$

• On a donc l'encadrement :

$$a_0 m^2 \leqslant \sum_{1 \leqslant i, j \leqslant m} f(v_i \cdot v_j) \leqslant m f(1),$$

et donc:

$$m \leqslant \frac{f(1)}{a_0}.$$

20. D'après **5.(a)(b)**, $C \subset S_7$ et pour tout couple (x,y) d'éléments distincts de C, on a : $x \cdot y \leq \frac{1}{2}$.

On considère de plus :

$$f = p_0 + p_1 + \frac{5}{7}p_2 + \frac{13}{28}p_3 + \frac{19}{84}p_4 + \frac{5}{56}p_5 + \frac{5}{252}p_6 = \frac{320}{3}(X+1)\left(X+\frac{1}{2}\right)^2X^2\left(X-\frac{1}{2}\right).$$

Alors, sur $\left[-1,\frac{1}{2}\right]$, f est négative.

On peut donc appliquer le résultat de la question 19., ce qui nous permet d'affirmer que :

$$\tau_8 \leqslant m \leqslant f(1) = \frac{320}{3} \times 2 \times \left(\frac{3}{2}\right)^2 \times 1^2 \times \frac{1}{2} = 240.$$

Donc, en utilisant 5.(c), on en déduit que :

$$\tau_8 = 240.$$

Partie V

21. Comme en **18.** :

$$\forall x \in \mathbb{R}^n, \quad \sum_{1 \leqslant i,j \leqslant m} p_k(v_i \cdot v_j) x_i x_j = \sum_{1 \leqslant i,j \leqslant m} \left(\sum_h u_h(v_i) u_h(v_j) \right) x_i x_j = \sum_h \left(\sum_{1 \leqslant i \leqslant m} u_h(v_i) x_i \right)^2 \geqslant 0.$$

Donc,

la matrice
$$(p_k(v_i \cdot v_j))_{1 \leq i,j \leq m}$$
 est positive.

22. (a) Puisque S est une matrice symétrique réelle positive, elle est ortogonalement semblable à une matrice diagonale à coefficients positifs, c'est-à-dire :

$$\exists P \in \mathcal{O}_m(\mathbb{R}), \exists D = \operatorname{Diag}(\lambda_1, \dots, \lambda_m) \quad \text{avec} : \quad \lambda_i \geqslant 0, \qquad S = {}^t PDP.$$

De pus, puisque S est de rang $r \leq n$ par hypothèse, on a aussi $r \leq m$ de sorte qu'on peut considérer les coefficients diagonaux λ_i de D tels que :

$$\forall i \in [1, r], \lambda_i > 0,$$
 et: $i > r \Rightarrow \lambda_i = 0.$

Considérons alors la matrice $D' \in \mathcal{M}_{n,m}(\mathbb{R})$ définie de la manière suivante :

$$\forall (i,j) \in [1,n] \times [1,m], d'_{ij} = 0 \text{ si : } i \neq j, \text{ et : } d'_{ii} = \sqrt{\lambda_i}.$$

Ainsi, si $n \leq m$ on ajoute m-n colonnes de 0 à droite de $\mathrm{Diag}(\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n})$; et si $n \geq m$ alors on ajoute n-m lignes de 0 en bas de $\mathrm{Diag}(\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n})$. On a donc : ${}^tD'.D' = D$ et donc :

$$S = {}^tP^tD'.D'P.$$

Finalement, en posant $A = D'P \in \mathcal{M}_{n,m}(\mathbb{R})$ on obtient : $S = {}^tA.A,$ et donc :

$$\exists A \in \mathcal{M}_{n,m}(\mathbb{R}), \quad S = {}^{t}A.A.$$

(b) Il suffit de vérifier que l'on peut écrire : $\forall i, j \in [1, m], s_{ij} = v_i \cdot v_j$ avec $v_i, v_j \in S_{n-1}$, c'est-à-dire que $|s_{ij}| \leq 1$; on pourra alors appliquer le résultat de **21**.

Or, par hypothèse : $\forall i \in \llbracket 1, m \rrbracket, s_{ii} = 1 = v_i \cdot v_i$. Raisonnons alors par l'absurde en supposant que : $\max_{1 \leqslant i, j \leqslant m} |s_{ij}| > 1$. Il existe donc $i_0, j_0 \in \llbracket 1, m \rrbracket$ tels que : $i_0 \neq j_0$ et $|s_{i_0j_0}| > 1$. En notant aussi $(e_i)_{1 \leqslant i \leqslant m}$ la base canonique de $\mathcal{M}_{m,1}(\mathbb{R})$, considérons alors la matrice-colonne $X = e_{i_0} - e_{j_0}$. On a alors :

$${}^{t}XSX = -2s_{i_0j_0} + s_{i_0i_0} + s_{j_0j_0} = -2s_{i_0j_0} + 2 < 0,$$

d'où une contradiction. Donc :

$$\forall i, j \in [1, m], |s_{i,j}| \leq 1.$$

On peut donc conclure:

la matrice
$$(p_k(s_{ij}))_{1 \leq i,j \leq m}$$
 est positive.

(c) Il suffit de considérer la matrice-colonne $X = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$, et alors :

$${}^{t}XSX = \sum_{1 \leqslant i, j \leqslant m} s_{ij} \geqslant 0.$$

Donc:

la somme des coefficients d'une matrice symétrique positive est positive.

(d) D'après 22.(b), la matrice $(p_k(s_{ij}))_{1 \leq i,j \leq m}$ est symétrique positive. Donc, d'après 22.(c) (et avec k=2):

$$\sum_{1 \le i, j \le m} p_2(s_{ij}) \geqslant 0.$$

Or, d'après 17. : $p_2 = \lambda_2(nX^2 - 1)$ avec $\lambda_2 > 0$. On obtient donc :

$$\sum_{1 \le i, j \le m} \lambda_2 (ns_{ij}^2 - 1) \geqslant 0.$$

On en déduit donc :

$$n\sum_{1\leqslant i,j\leqslant m}s_{ij}^2\geqslant \sum_{1\leqslant i,j\leqslant m}1=m^2.$$

Finalement:

$$\sum_{1 \leqslant i,j \leqslant m} s_{ij}^2 \geqslant \frac{m^2}{n}.$$