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A diagram from [3].

“The obvious mathematical breakthrough would be development of an

easy way to factor large prime numbers.”
-Bill Gates, The Road Ahead, pg. 265

1 Introduction

A prime ideal of a commutative ring R is an ideal p such that R/p is an integral
domain, and an ideal p is mazimal if R/p is a field. Let K = Q(«) be a number
field, and let Ok be the ring of all elements of K that are integral over Z. As you

know, O is a Dedekind domain.
In order to employ our geometric intuition, we may view O as a one-dimensional

“scheme”
X = Spec(Ok) = { all prime ideals of Ok }



“over”
Y = Spec(Z) = {(0)} U{pZ : p € Z is prime }.

There is a natural map f : X — Y that sends a prime ideal p € X topNZ €Y.
For much more on this point of view, see [2, Ch. 2].

Ideals were originally introduced by Kummer because in rings of integers of
number fields ideals factor uniquely as products of primes ideals, which is something
that is not true for general algebraic integers. (The failure of unique factorization
for algebraic integers was used by Liouville to “destroy” Lamé’s purported 1847
“proof” of Fermat’s Last Theorem.)

If p € Z is a prime number, then the ideal pOg of Ok factors uniquely as a
product []p;’, where the p; are maximal ideals of Og. Viewed geometrically, the
decomposition of pOy into prime ideals in O is the same as the fiber f~'(pZ) (plus
ramification data). We are concerned with how to compute f~!(pZ) in practice.

Example 1.1. The following MAGMA session shows the commands needed to com-
pute the factorization of pOg in MAGMA for K the number field defined by a root
of 2% + 7ot + 322 —z + 1.

> K<a> := NumberField (x"5+7*x~4+3%x~2-x+1) ;
> 0K := MaximalOrder(K);

> 1 := 2x0K;

> Factorization(I);

L

<Principal Prime Ideal of 0K

Generator:

[2, 0, 0, 0, 01, 1>

]

> Factorization(Discriminant (0K));
[ <5, 1>, <353, 1>, <1669, 1> ]

> J := 5x0K;
> Factorization(J);
[

<Prime Ideal of OK

Two element generators:
[5, 0, 0, 0, 0]

2, 1, 0, 0, 01, 1>,
<Prime Ideal of OK

Two element generators:
[5, 0, 0, 0, O]

(3, 1, 0, 0, 01, 2>,
<Prime Ideal of OK

Two element generators:



[5, 0, 0, 0, 0]
[2, 4, 1, 0, 0], 1>
]

> [K!0K.i : i in [1..5]];
[ 1, a, a~2, a~3, a4 1]

Thus 20 is already a prime ideal, and
50k = (5,2 +a) - (5,3 +a)* (5,2 + 4a + a?).

Notice that in this example O = Z[a]. But be warned—in general, one can not
find an a such that Ox = Z|a] (see Example 4.2 below). When Ox = Z[a] it is
very easy to factor pOg, as we will see below. The following factorization gives a
hint as to why:

Tt 43 —r+ 1= (2 +2) - (2 +3)% (2 +42+2) (mod 5).

The exponent 2 of (5,3 +a)? in the factorization of 5O above suggests “rami-
fication”, in the sense that the cover X — Y has less points (counting their “size”,
i.e., their residue class degree) in its fiber over 5 than it has generically. Here’s a
suggestive picture:




Diagram of Spec(Og) — Spec(Z)

2 A Method that Usually Works

Suppose a € O is such that K = Q(«), and let g(z) be the minimal polynomial
of a. Then Z[a] C Ok, and we have a diagram of schemes

(77) € Spec(Ox)

l l

USpec((Z/pZ)[x]/(g;")) — Spec(Z[a])

| ”

Spec(Z/pZ) ———— Spec(Z

where g = [[, 7" is the factorization of the image of g in (Z/pZ)[x].

The cover Spec(Z[a]) — Spec(Z) is easy to understand because it is defined by
the single equation g(z). To give a maximal ideal p of Z[«a] such that f(p) = pZ is
the same as giving a homomorphism Z[z]/(g) — F,, which is in turn the same as
giving a root of g in F, (an allowed place where = can go). If the index of Z[a] in
Ok is coprime to p, then the primes p; in the factorization of pOx don’t decompose
further going from Z[a] to O, so we are done (the homomorphisms Z[a] — T,
are in bijection with the homomorphisms O — Fp). We formalize this in the
following theorem:

Theorem 2.1. Let g(x) denote the minimal polynomial of o over Q. Let p be a
prime number that does not divide [Ok : Z[a]]. Suppose that

§=H € (Z/pZ)[x]

with the g, distinct monic irreducible polynomials. Let p; = (p, g;(a)) with g; € Z[x]
any polynomial whose image is g, in (Z/pZ)[X]. Then

¢
pOr = H ;'
i=1

Geometrically,
fﬁl(pZ) = {p17p27 s th}a
(with multiplicities e; ).



3 Method that Always Works

Unfortunately, there are numbers fields K such that Ok is not of the form Z[«] for
any a € K. Even worse, Dedekind found a field K such that 2 | [Of : Z[«]] for all
a € Ok, so Theorem 2.1 can not be used to factor 2 (see Example 4.2 below).

I looked in a large handful of algebraic number theory books, and found only
one (see [1, §6.2]) that reports on how to solve the general problem of computing
the maximal ideals of Ok over a given prime p. In general, this appears to be
a surprising problem, in the sense that the algorithms to solve it are much more
sophisticated than Theorem 2.1. However, these complicated algorithms all run
very quickly in practice.

For simplicity we consider the following slightly easier problem, whose solution
contains the key ideas. Let O be any order in Ok, i.e., a subring of O such that
the additive abelian group Ok /O is finite. Let [Of : O] = #(Ok/0).

Problem 3.1. For any prime p € Z, compute the set of maximal ideals of O that
contain p.

Solution (sketch).

Let K = Q(A) be a number field given by an algebraic integer 6 as root of its
minimal monic polynomial F' of degree n. We assume that an order O has been given
by a basis wi, . ..,w, and that O that contains Z[6)].

Given a prime number p € Z, the following (sketch of an) algorithm computes the
primes p; € Spec(O) lying over p, i.e., the maximal ideals p; of O that contain p. Each
of the following steps can be carried out very efficiently using little more than linear
algebra over IF,,. The details are in [1, §6.2.5].

1. [Check if easy] If p { disc(Z[f])/ disc(O) then by a slight modification of Theo-
rem 2.1, we easily factor pO.

2. [Compute radical] Using linear algebra over the finite field F,,, compute a basis for
I/pO, where I is the radical of pO. (The radical of pO is the ideal of elements
x € O such that ™ € pO for some positive integer m.)

3. [Compute quotient] Compute an F,, basis of

A=0/I=(0/p0)/(I/pO).

4. [Decompose] Decompose A as a product A = [[F,[x]/g;(z) of fields.

5. [Compute the maximal ideals] Each maximal ideal p; lying over p is the kernel of
O — A — F,[z]/gi(x).



4 Essential Discriminant Divisors

Definition 4.1. A prime p is an essential discriminant divisor if p | [Ok : Z[a]]
for every a € Ok.

Ezample 4.2 (Dedekind). Let K = Q(f) be the cubic field defined by the polynomial
f=a2%+ 22— 2x+8. We will use MAGMA, which implements the algorithm

described in the previous section, to show that 2 is an essential discriminant divisor
for K.

> K := NumberField(x"3 + x"2 - 2%x + 8);
> 0K := MaximalOrder (K);
> Factorization (2*0K) ;

[

<Prime Ideal of OK
Basis:

[2 0 0]

[0 1 0]

[0 0 1], 1>,

<Prime Ideal of OK
Basis:

[1 0 1]

[0 1 0]

[0 0 2], 1>,

<Prime Ideal of OK
Basis:

[1 0 1]

[0 1 1]

[0 02], 1>

]

Thus 20§ = p1pops with the p; distinct and Ok /p; = Fy. If O = Z]a] for some
a € Ok with minimal polynomial g, then g(x) € Fy[z] must be a product of three
distinct linear factors, which is impossible.
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