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A diagram from [3℄.

\The obvious mathematial breakthrough would be development of an

easy way to fator large prime numbers."

{Bill Gates, The Road Ahead, pg. 265

1 Introdution

A prime ideal of a ommutative ring R is an ideal p suh that R=p is an integral

domain, and an ideal p is maximal if R=p is a �eld. Let K = Q(�) be a number

�eld, and let O

K

be the ring of all elements of K that are integral over Z. As you

know, O

K

is a Dedekind domain.

In order to employ our geometri intuition, we may viewO

K

as a one-dimensional

\sheme"

X = Spe(O

K

) = f all prime ideals of O

K

g
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\over"

Y = Spe(Z) = f(0)g [ fpZ : p 2 Z is prime g:

There is a natural map f : X ! Y that sends a prime ideal p 2 X to p \ Z 2 Y .

For muh more on this point of view, see [2, Ch. 2℄.

Ideals were originally introdued by Kummer beause in rings of integers of

number �elds ideals fator uniquely as produts of primes ideals, whih is something

that is not true for general algebrai integers. (The failure of unique fatorization

for algebrai integers was used by Liouville to \destroy" Lam�e's purported 1847

\proof" of Fermat's Last Theorem.)

If p 2 Z is a prime number, then the ideal pO

K

of O

K

fators uniquely as a

produt

Q

p

e

i

i

, where the p

i

are maximal ideals of O

K

. Viewed geometrially, the

deomposition of pO

K

into prime ideals inO

K

is the same as the �ber f

�1

(pZ) (plus

rami�ation data). We are onerned with how to ompute f

�1

(pZ) in pratie.

Example 1.1. The followingMagma session shows the ommands needed to om-

pute the fatorization of pO

K

in Magma for K the number �eld de�ned by a root

of x

5

+ 7x

4

+ 3x

2

� x+ 1.

> K<a> := NumberField(x^5+7*x^4+3*x^2-x+1);

> OK := MaximalOrder(K);

> I := 2*OK;

> Fatorization(I);

[

<Prinipal Prime Ideal of OK

Generator:

[2, 0, 0, 0, 0℄, 1>

℄

> Fatorization(Disriminant(OK));

[ <5, 1>, <353, 1>, <1669, 1> ℄

> J := 5*OK;

> Fatorization(J);

[

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0℄

[2, 1, 0, 0, 0℄, 1>,

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0℄

[3, 1, 0, 0, 0℄, 2>,

<Prime Ideal of OK

Two element generators:
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[5, 0, 0, 0, 0℄

[2, 4, 1, 0, 0℄, 1>

℄

> [K!OK.i : i in [1..5℄℄;

[ 1, a, a^2, a^3, a^4 ℄

Thus 2O

K

is already a prime ideal, and

5O

K

= (5; 2 + a) � (5; 3 + a)

2

� (5; 2 + 4a + a

2

):

Notie that in this example O

K

= Z[a℄. But be warned|in general, one an not

�nd an a suh that O

K

= Z[a℄ (see Example 4.2 below). When O

K

= Z[a℄ it is

very easy to fator pO

K

, as we will see below. The following fatorization gives a

hint as to why:

x

5

+ 7x

4

+ 3x

2

� x+ 1 � (x+ 2) � (x+ 3)

2

� (x

2

+ 4x+ 2) (mod 5):

The exponent 2 of (5; 3+ a)

2

in the fatorization of 5O

K

above suggests \rami-

�ation", in the sense that the over X ! Y has less points (ounting their \size",

i.e., their residue lass degree) in its �ber over 5 than it has generially. Here's a

suggestive piture:
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PSfrag replaements

(5; 2 + 4a+ a

2

)

(5; 3 + a)

2

(5; 2 + a)

5Z

2O

K

2Z

(0)

(0)

3Z

7Z

11Z
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Diagram of Spe(O

K

)! Spe(Z)

2 A Method that Usually Works

Suppose � 2 O

K

is suh that K = Q(�), and let g(x) be the minimal polynomial

of �. Then Z[�℄ � O

K

, and we have a diagram of shemes

(??)

�

�

//

��

Spe(O

K

)

��
S

Spe((Z=pZ)[x℄=(g

e

i

i

))

�

�

//

��

Spe(Z[�℄)

��

Spe(Z=pZ)

�

�

//
Spe(Z)

where g =

Q

i

g

e

i

i

is the fatorization of the image of g in (Z=pZ)[x℄.

The over Spe(Z[�℄)! Spe(Z) is easy to understand beause it is de�ned by

the single equation g(x). To give a maximal ideal p of Z[�℄ suh that f(p) = pZ is

the same as giving a homomorphism Z[x℄=(g)! F

p

, whih is in turn the same as

giving a root of g in F

p

(an allowed plae where x an go). If the index of Z[�℄ in

O

K

is oprime to p, then the primes p

i

in the fatorization of pO

K

don't deompose

further going from Z[�℄ to O

K

, so we are done (the homomorphisms Z[�℄ ! F

p

are in bijetion with the homomorphisms O

K

! F

p

). We formalize this in the

following theorem:

Theorem 2.1. Let g(x) denote the minimal polynomial of � over Q . Let p be a

prime number that does not divide [O

K

: Z[�℄℄. Suppose that

g =

t

Y

i=1

g

e

i

i

2 (Z=pZ)[x℄

with the g

i

distint moni irreduible polynomials. Let p

i

= (p; g

i

(�)) with g

i

2 Z[x℄

any polynomial whose image is g

i

in (Z=pZ)[X℄. Then

pO

K

=

t

Y

i=1

p

e

i

i

:

Geometrially,

f

�1

(pZ) = fp

1

; p

2

; : : : ; p

t

g;

(with multipliities e

i

).
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3 Method that Always Works

Unfortunately, there are numbers �elds K suh that O

K

is not of the form Z[�℄ for

any � 2 K. Even worse, Dedekind found a �eld K suh that 2 j [O

K

: Z[�℄℄ for all

� 2 O

K

, so Theorem 2.1 an not be used to fator 2 (see Example 4.2 below).

I looked in a large handful of algebrai number theory books, and found only

one (see [1, x6.2℄) that reports on how to solve the general problem of omputing

the maximal ideals of O

K

over a given prime p. In general, this appears to be

a surprising problem, in the sense that the algorithms to solve it are muh more

sophistiated than Theorem 2.1. However, these ompliated algorithms all run

very quikly in pratie.

For simpliity we onsider the following slightly easier problem, whose solution

ontains the key ideas. Let O be any order in O

K

, i.e., a subring of O

K

suh that

the additive abelian group O

K

=O is �nite. Let [O

K

: O℄ = #(O

K

=O).

Problem 3.1. For any prime p 2 Z, ompute the set of maximal ideals of O that

ontain p.

Solution (sketh).

Let K = Q (�) be a number �eld given by an algebrai integer � as root of its

minimal moni polynomial F of degree n. We assume that an order O has been given

by a basis !

1

; : : : ; !

n

and that O that ontains Z[�℄.

Given a prime number p 2 Z, the following (sketh of an) algorithm omputes the

primes p

i

2 Spe(O) lying over p, i.e., the maximal ideals p

i

of O that ontain p. Eah

of the following steps an be arried out very eÆiently using little more than linear

algebra over F

p

. The details are in [1, x6.2.5℄.

1. [Chek if easy℄ If p - dis(Z[�℄)= dis(O) then by a slight modi�ation of Theo-

rem 2.1, we easily fator pO.

2. [Compute radial℄ Using linear algebra over the �nite �eld F

p

, ompute a basis for

I=pO, where I is the radial of pO. (The radial of pO is the ideal of elements

x 2 O suh that x

m

2 pO for some positive integer m.)

3. [Compute quotient℄ Compute an F

p

basis of

A = O=I = (O=pO)=(I=pO):

4. [Deompose℄ Deompose A as a produt A

�

=

Q

F

p

[x℄=g

i

(x) of �elds.

5. [Compute the maximal ideals℄ Eah maximal ideal p

i

lying over p is the kernel of

O ! A! F

p

[x℄=g

i

(x).
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4 Essential Disriminant Divisors

De�nition 4.1. A prime p is an essential disriminant divisor if p j [O

K

: Z[�℄℄

for every � 2 O

K

.

Example 4.2 (Dedekind). LetK = Q (�) be the ubi �eld de�ned by the polynomial

f = x

3

+ x

2

� 2x + 8. We will use MAGMA, whih implements the algorithm

desribed in the previous setion, to show that 2 is an essential disriminant divisor

for K.

> K := NumberField(x^3 + x^2 - 2*x + 8);

> OK := MaximalOrder(K);

> Fatorization(2*OK);

[

<Prime Ideal of OK

Basis:

[2 0 0℄

[0 1 0℄

[0 0 1℄, 1>,

<Prime Ideal of OK

Basis:

[1 0 1℄

[0 1 0℄

[0 0 2℄, 1>,

<Prime Ideal of OK

Basis:

[1 0 1℄

[0 1 1℄

[0 0 2℄, 1>

℄

Thus 2O

K

= p

1

p

2

p

3

with the p

i

distint and O

K

=p

i

�

=

F

2

. If O

K

= Z[�℄ for some

� 2 O

K

with minimal polynomial g, then g(x) 2 F

2

[x℄ must be a produt of three

distint linear fators, whih is impossible.
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