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A diagram from [3℄.

\The obvious mathemati
al breakthrough would be development of an

easy way to fa
tor large prime numbers."

{Bill Gates, The Road Ahead, pg. 265

1 Introdu
tion

A prime ideal of a 
ommutative ring R is an ideal p su
h that R=p is an integral

domain, and an ideal p is maximal if R=p is a �eld. Let K = Q(�) be a number

�eld, and let O

K

be the ring of all elements of K that are integral over Z. As you

know, O

K

is a Dedekind domain.

In order to employ our geometri
 intuition, we may viewO

K

as a one-dimensional

\s
heme"

X = Spe
(O

K

) = f all prime ideals of O

K

g
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\over"

Y = Spe
(Z) = f(0)g [ fpZ : p 2 Z is prime g:

There is a natural map f : X ! Y that sends a prime ideal p 2 X to p \ Z 2 Y .

For mu
h more on this point of view, see [2, Ch. 2℄.

Ideals were originally introdu
ed by Kummer be
ause in rings of integers of

number �elds ideals fa
tor uniquely as produ
ts of primes ideals, whi
h is something

that is not true for general algebrai
 integers. (The failure of unique fa
torization

for algebrai
 integers was used by Liouville to \destroy" Lam�e's purported 1847

\proof" of Fermat's Last Theorem.)

If p 2 Z is a prime number, then the ideal pO

K

of O

K

fa
tors uniquely as a

produ
t

Q

p

e

i

i

, where the p

i

are maximal ideals of O

K

. Viewed geometri
ally, the

de
omposition of pO

K

into prime ideals inO

K

is the same as the �ber f

�1

(pZ) (plus

rami�
ation data). We are 
on
erned with how to 
ompute f

�1

(pZ) in pra
ti
e.

Example 1.1. The followingMagma session shows the 
ommands needed to 
om-

pute the fa
torization of pO

K

in Magma for K the number �eld de�ned by a root

of x

5

+ 7x

4

+ 3x

2

� x+ 1.

> K<a> := NumberField(x^5+7*x^4+3*x^2-x+1);

> OK := MaximalOrder(K);

> I := 2*OK;

> Fa
torization(I);

[

<Prin
ipal Prime Ideal of OK

Generator:

[2, 0, 0, 0, 0℄, 1>

℄

> Fa
torization(Dis
riminant(OK));

[ <5, 1>, <353, 1>, <1669, 1> ℄

> J := 5*OK;

> Fa
torization(J);

[

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0℄

[2, 1, 0, 0, 0℄, 1>,

<Prime Ideal of OK

Two element generators:

[5, 0, 0, 0, 0℄

[3, 1, 0, 0, 0℄, 2>,

<Prime Ideal of OK

Two element generators:
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[5, 0, 0, 0, 0℄

[2, 4, 1, 0, 0℄, 1>

℄

> [K!OK.i : i in [1..5℄℄;

[ 1, a, a^2, a^3, a^4 ℄

Thus 2O

K

is already a prime ideal, and

5O

K

= (5; 2 + a) � (5; 3 + a)

2

� (5; 2 + 4a + a

2

):

Noti
e that in this example O

K

= Z[a℄. But be warned|in general, one 
an not

�nd an a su
h that O

K

= Z[a℄ (see Example 4.2 below). When O

K

= Z[a℄ it is

very easy to fa
tor pO

K

, as we will see below. The following fa
torization gives a

hint as to why:

x

5

+ 7x

4

+ 3x

2

� x+ 1 � (x+ 2) � (x+ 3)

2

� (x

2

+ 4x+ 2) (mod 5):

The exponent 2 of (5; 3+ a)

2

in the fa
torization of 5O

K

above suggests \rami-

�
ation", in the sense that the 
over X ! Y has less points (
ounting their \size",

i.e., their residue 
lass degree) in its �ber over 5 than it has generi
ally. Here's a

suggestive pi
ture:
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PSfrag repla
ements

(5; 2 + 4a+ a

2

)

(5; 3 + a)

2

(5; 2 + a)

5Z

2O

K

2Z

(0)

(0)

3Z

7Z

11Z
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Diagram of Spe
(O

K

)! Spe
(Z)

2 A Method that Usually Works

Suppose � 2 O

K

is su
h that K = Q(�), and let g(x) be the minimal polynomial

of �. Then Z[�℄ � O

K

, and we have a diagram of s
hemes

(??)

�

�

//

��

Spe
(O

K

)

��
S

Spe
((Z=pZ)[x℄=(g

e

i

i

))

�

�

//

��

Spe
(Z[�℄)

��

Spe
(Z=pZ)

�

�

//
Spe
(Z)

where g =

Q

i

g

e

i

i

is the fa
torization of the image of g in (Z=pZ)[x℄.

The 
over Spe
(Z[�℄)! Spe
(Z) is easy to understand be
ause it is de�ned by

the single equation g(x). To give a maximal ideal p of Z[�℄ su
h that f(p) = pZ is

the same as giving a homomorphism Z[x℄=(g)! F

p

, whi
h is in turn the same as

giving a root of g in F

p

(an allowed pla
e where x 
an go). If the index of Z[�℄ in

O

K

is 
oprime to p, then the primes p

i

in the fa
torization of pO

K

don't de
ompose

further going from Z[�℄ to O

K

, so we are done (the homomorphisms Z[�℄ ! F

p

are in bije
tion with the homomorphisms O

K

! F

p

). We formalize this in the

following theorem:

Theorem 2.1. Let g(x) denote the minimal polynomial of � over Q . Let p be a

prime number that does not divide [O

K

: Z[�℄℄. Suppose that

g =

t

Y

i=1

g

e

i

i

2 (Z=pZ)[x℄

with the g

i

distin
t moni
 irredu
ible polynomials. Let p

i

= (p; g

i

(�)) with g

i

2 Z[x℄

any polynomial whose image is g

i

in (Z=pZ)[X℄. Then

pO

K

=

t

Y

i=1

p

e

i

i

:

Geometri
ally,

f

�1

(pZ) = fp

1

; p

2

; : : : ; p

t

g;

(with multipli
ities e

i

).
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3 Method that Always Works

Unfortunately, there are numbers �elds K su
h that O

K

is not of the form Z[�℄ for

any � 2 K. Even worse, Dedekind found a �eld K su
h that 2 j [O

K

: Z[�℄℄ for all

� 2 O

K

, so Theorem 2.1 
an not be used to fa
tor 2 (see Example 4.2 below).

I looked in a large handful of algebrai
 number theory books, and found only

one (see [1, x6.2℄) that reports on how to solve the general problem of 
omputing

the maximal ideals of O

K

over a given prime p. In general, this appears to be

a surprising problem, in the sense that the algorithms to solve it are mu
h more

sophisti
ated than Theorem 2.1. However, these 
ompli
ated algorithms all run

very qui
kly in pra
ti
e.

For simpli
ity we 
onsider the following slightly easier problem, whose solution


ontains the key ideas. Let O be any order in O

K

, i.e., a subring of O

K

su
h that

the additive abelian group O

K

=O is �nite. Let [O

K

: O℄ = #(O

K

=O).

Problem 3.1. For any prime p 2 Z, 
ompute the set of maximal ideals of O that


ontain p.

Solution (sket
h).

Let K = Q (�) be a number �eld given by an algebrai
 integer � as root of its

minimal moni
 polynomial F of degree n. We assume that an order O has been given

by a basis !

1

; : : : ; !

n

and that O that 
ontains Z[�℄.

Given a prime number p 2 Z, the following (sket
h of an) algorithm 
omputes the

primes p

i

2 Spe
(O) lying over p, i.e., the maximal ideals p

i

of O that 
ontain p. Ea
h

of the following steps 
an be 
arried out very eÆ
iently using little more than linear

algebra over F

p

. The details are in [1, x6.2.5℄.

1. [Che
k if easy℄ If p - dis
(Z[�℄)= dis
(O) then by a slight modi�
ation of Theo-

rem 2.1, we easily fa
tor pO.

2. [Compute radi
al℄ Using linear algebra over the �nite �eld F

p

, 
ompute a basis for

I=pO, where I is the radi
al of pO. (The radi
al of pO is the ideal of elements

x 2 O su
h that x

m

2 pO for some positive integer m.)

3. [Compute quotient℄ Compute an F

p

basis of

A = O=I = (O=pO)=(I=pO):

4. [De
ompose℄ De
ompose A as a produ
t A

�

=

Q

F

p

[x℄=g

i

(x) of �elds.

5. [Compute the maximal ideals℄ Ea
h maximal ideal p

i

lying over p is the kernel of

O ! A! F

p

[x℄=g

i

(x).
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4 Essential Dis
riminant Divisors

De�nition 4.1. A prime p is an essential dis
riminant divisor if p j [O

K

: Z[�℄℄

for every � 2 O

K

.

Example 4.2 (Dedekind). LetK = Q (�) be the 
ubi
 �eld de�ned by the polynomial

f = x

3

+ x

2

� 2x + 8. We will use MAGMA, whi
h implements the algorithm

des
ribed in the previous se
tion, to show that 2 is an essential dis
riminant divisor

for K.

> K := NumberField(x^3 + x^2 - 2*x + 8);

> OK := MaximalOrder(K);

> Fa
torization(2*OK);

[

<Prime Ideal of OK

Basis:

[2 0 0℄

[0 1 0℄

[0 0 1℄, 1>,

<Prime Ideal of OK

Basis:

[1 0 1℄

[0 1 0℄

[0 0 2℄, 1>,

<Prime Ideal of OK

Basis:

[1 0 1℄

[0 1 1℄

[0 0 2℄, 1>

℄

Thus 2O

K

= p

1

p

2

p

3

with the p

i

distin
t and O

K

=p

i

�

=

F

2

. If O

K

= Z[�℄ for some

� 2 O

K

with minimal polynomial g, then g(x) 2 F

2

[x℄ must be a produ
t of three

distin
t linear fa
tors, whi
h is impossible.
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