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Abstract—We discuss issues of algebraic independence for values of the function ez at algebraic
points. The most general result of this kind was established at the end of the 19th century and is
called the Lindemann–Weierstrass theorem. This is historically the first theorem on the algebraic
independence of numbers and it can be proved now in various ways. Below we propose one more
way to prove it.
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In 1873 Ch. Hermite [1, vol. 3, pp. 150–181] proved that the number e is transcendental, that is, he
proved that e cannot be a root of some polynomial with integer coefficients. In 1882 F. Lindemann
[2] introduced multiple new ideas in the considerations of Hermite and proved that the number π
is transcendental, thus solving the prominent problem of squaring the circle. In fact, Lindemann
established a substantially more general assertion: for any algebraic number a �= 0 the value of ea is
transcendental. This assertion also implies that the natural logarithms of algebraic numbers different
from 0 and 1 are transcendental and, in particular, that π = i−1 ln(−1) is transcendental, as well as that
the values of the trigonometric functions are transcendental.

Lindemann formulated an even more general theorem without proving it (see Theorem 2 below),
noting that it can be proved using the same ideas.

Theorem 1 (Lindemann–Weierstrass theorem). If algebraic numbers θ1, . . . , θr are linearly inde-
pendent over the field Q, then the values of the exponential function eθ1 , . . . , eθr are algebraically
independent over Q.

An equivalent formulation is given by

Theorem 2 (Lindemann–Weierstrass theorem). If α0, α1, . . . , αm,m ≥ 1 are different algebraic
numbers, then

eα0 , eα1 , . . . , eαm (1)

are linearly independent over the field of all algebraic numbers.

The proof of the second theorem was published by K. Weierstrass in 1885 [3]. Today, this theorem is
referred to as the Lindemann–Weierstrass theorem.

1. SUFFICIENT CONDITION OF LINEAR INDEPENDENCE OF NUMBERS

Suppose that K is a finite extension of the field of rational numbers of order ν. For the lower bound
of the number of numbers linearly independent over the field K in a given set, we can use the following
proposition.
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Proposition 1. Suppose that τ is a positive number and σ(t) is a function determined for all
positive values of t, monotonously increasing beginning from some point, and unbounded such
that

lim
t→∞

σ(t+ 1)

σ(t)
= 1.

Suppose that ω = (ω1, . . . , ωm) ∈ Cm \ {0} and LN (x) is a sequence of linear forms with integer
coefficients from the field K satisfying the conditions

ln |LN | ≤ σ(N), N ≥ N0, lim
N→∞

ln |LN (ω)|
σ(N)

= −τ.

Then, among the numbers ω1, . . . , ωm there are at least
τ

ν
numbers linearly independent over K.

This statement is a weakened variant of the corollary proved in work [4]. The statement in the
case K = Q was proved in work [5]. In particular, it was used by T. Rivoal (see [6]) for proving the
infinite dimension of the linear space over Q generated by the values of the Riemann zeta function
ζ(3), ζ(5), ζ(7), . . .. In this work we use his variant for proving the Lindemann–Weierstrass theorem,
which allows in our proof avoiding the structure of the complete system of linearly independent linear
forms of the numbers at consideration (see papers by Siegel [7] and Mahler [8, 9]).

2. ANALYTICAL STRUCTURE

The material exposed in this section is based on the works by Mahler (see, e.g., [8, 9]), which in his
turn used the Hermite integral identity providing the Hermite–Padé approximation of second kind.

Suppose that m different complex numbers α1, . . . , αm and an integer nonnegative number n are
given. We set

N = m(n+ 1)− 1, Q(x) =
m∏

k=1

(x− αk)
n+1.

Then, as was first proved by Hermite in 1893 [1, vol. 4, pp. 357–377], the following identity is valid:

R(z) =
1

2πi

∫

C

ezζdζ

(ζ − α1)n+1 . . . (ζ − αm)n+1
=

m∑

k=1

Pk(z)e
αkz, (2)

where C is a circle containing all points α1, . . . , αm. For each k, 0 ≤ k ≤ m, the coefficient Pk(z) is a
polynomial of z of order n:

Pk(z) =

n∑

j=0

akj
zn−j

(n− j)!
, akj =

∑

l

m∏

i=1
i�=k

(−1)li(n+ li)!

n!li!
(αk − αi)

−1−n−li , (3)

where the summation is carried out over all sets of integer nonnegative numbers l1, . . . , lk−1, lk+1, . . . , lm,
the sum of which is equal to j.

Proposition 2. Suppose that α1, . . . , αm are arbitrary algebraic numbers.
(1) If q is the smallest natural number such that q(αi − αj)

−1 ∈ ZK, 1 ≤ i < j ≤ m, then

n!qNPk(1) ∈ ZK, |Pk(1)| ≤ (2M + 1)N , (4)

where M = max
1≤i<j≤m

|αi − αj |
−1

.

(2) As n −→ ∞, the following asymptotic formula is valid:

Rn(1) = (2π)−1/2em
−1(α1+...+αm)N−N−1/2eN (1 + o(1)),

where N = m(n+ 1)− 1.
We assign ω = (eα1 , . . . , eαm) and Ln(ω) = n!qNR(1).
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Corollary 1. The value Ln(ω) defined above is a linear form of coordinates ωj of the vector ω.
The coefficients Ln belong to ZK, and

ln |Ln| ≤ σ(n) = n lnn+ cn, lim
n−→∞

ln |Ln(ω)|
σ(n)

= 1−m,

where the constant c depends only on the numbers α1, . . . , αm.
Proof of Proposition 2. The right-hand side of identity (2) is a sum of residues of the function under

the integral sign in the left-hand side of (2) at the points α1, . . . , αm.
Embedding (4) immediately follows from the representation (3) if we take into account

m∑

i=1
i�=k

(n+ 1 + li) = N − n+ j ≤ N.

To prove inequality (4), we estimate the coefficients of the polynomial Pk(z). Identity (2) implies the
representation

akj =
1

2πi

∫

Ck

(ζ − αk)
n+1dζ

Q(ζ)(ζ − αk)j+1
,

where Ck is the circle |ζ − αk| =
1

2M
. Considering that the following inequality is true on the circle Ck

for i �= k:

|ζ − αi| ≥ |αk − αi| − |ζ − αk| ≥
1

M
− 1

2M
=

1

2M
,

we obtain the estimate

|akj| ≤ (2M)N−n+j .

The same estimate is valid for the conjugates of the number akj , because from (2) it follows that for them
there exists the same integral representation as for akj but with a replacement of the integrand function

(ζ − αk)
n+1

Q(ζ)(ζ − αk)j+1
by the conjugate one. Now, from (3) we find

|Pk(1)| ≤
n∑

j=0

|akj |
1

(n− j)!
≤

n∑

j=0

(2M)N−n+j

(n− j)!
≤ (2M)N

(
1 +

1

2M

)N
,

which proves inequality (4).
The proof of the second part of Proposition 2 uses the saddle point method, and we are grateful to

A.Yu. Popov suggesting the variant of considerations given here.
For a sufficiently large n we set the radius of circle C to be N = m(n+ 1)− 1. Then, for z = Neiϕ

we have dz = Nieiϕdϕ such that

In =
1

2π

∫ π

−π
eNeiϕ(Neiϕ)−Nan(ϕ)dϕ,

where an(ϕ) =
∏m

j=1

(
1− αjN

−1e−iϕ
)−n−1. For a sufficiently large n we obtain

an(ϕ) = exp

⎛

⎝e−iϕ
m∑

j=1

αj

m
+O(n−1)

⎞

⎠ , (5)

where the constant in O(.) depends only on αj, m and is independent of ϕ.
The representation In = N−NeNFn is valid, where

Fn =
1

2π

∫ π

−π
eN(eiϕ−1−iϕ)an(ϕ)dϕ.
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Denote λn =
lnn√
n

and

Gn =
1

2π

∫ λn

−λn

eN(eiϕ−1−iϕ)an(ϕ)dϕ.

Then, due to the inequality,

	(eiϕ − 1− iϕ) = cosϕ− 1 ≤
{
−ϕ2

π , if |ϕ| ≤ π
2 ;

−1, if π
2 ≤ |ϕ| ≤ π,

for
π

2
≥ |ϕ| ≥ λn we have

	
(
eiϕ − 1− iϕ

)
≤ − ln2 n

πn
,

so that, using (5) and the latter inequality, we obtain

|Fn −Gn| ≤ exp
(
−m

3
ln2 n

)
.

For |ϕ| ≤ λn we have

N
(
eiϕ − 1− iϕ

)
= N

(
−ϕ2

2
+O(ϕ3)

)
= −Nϕ2

2
+O(n− 1

2 ln3 n),

and, therefore,

eN(e
iϕ−1−iϕ) = e−

Nϕ2

2

(
1 +O(n− 1

2 ln3 n)
)
.

In addition to that, from (5) we find

an(ϕ) = exp

⎛

⎝
m∑

j=1

αj

m

⎞

⎠+O(n− 1
2 lnn);

hence,

Gn =
1

2π

∫ λn

−λn

e−
Nϕ2

2 an(ϕ)dϕ
(
1 +O(n− 1

2 ln3 n)
)

=
1

2π
exp

⎛

⎝
m∑

j=1

αj

m

⎞

⎠
∫ λn

−λn

e−
Nϕ2

2 dϕ
(
1 +O(n− 1

2 ln3 n)
)

=
1

2π
exp

⎛

⎝
m∑

j=1

αj

m

⎞

⎠N− 1
2

∫ λnN
1
2

−λnN
1
2

e−
t2

2 dt
(
1 +O(n− 1

2 ln3 n)
)

=
1

2π
exp

⎛

⎝
m∑

j=1

αj

m

⎞

⎠N− 1
2

∫ ∞

−∞
e−

t2

2 dt(1 + o(1)).

Thus, Gn = (2πN)−
1
2 exp

(∑m
j=1

αj

m

)
(1 + o(1)), which leads to the desired statement.

3. PROOF OF THE LINDEMANN–WEISERSTRASS THEOREM

Apparently, Siegel was first (see [7]) who used the considerations related with the Veronese mapping
in the theory of transcendental numbers to reduce the problems on algebraic independence of numbers
to the problems of linear independence (see the formulations of Theorems 1 and 2). We now use his idea.
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In the denotations of Theorem 1, we suppose that numbers (1) are algebraically dependent over
the field of all algebraic numbers. Then, there exists a polynomial A of r of the variables T1, . . . , Tr,

A �= 0, with integer algebraic coefficients such that A(eθ1 , . . . , eθr ) = 0. By symbol K we denote the
field generated over Q by algebraic numbers θ1, . . . , θr and coefficients of the polynomial A. Suppose
also that ν = [K : Q] and d is the power of the polynomial A by totality of all its variables. We choose
and fix a sufficiently large natural number h > d such that the inequality is valid:

(h+ 1)(h + 2) · . . . · (h+ r) >
(
1− 1

ν

)
(h+ d+ 1)(h + d+ 2) · . . . · (h+ d+ r). (6)

This can be done, because the polynomials of h appearing in the left- and right-hand sides of this
inequality have the same powers and positive leading coefficients, and the leading coefficient of the left
polynomial is larger than the leading coefficient of the right polynomial.

Suppose that ω1, . . . , ωm are the numbers of type u1θ1 + . . . + urθr ordered in a certain way, where
(u1, . . . , ur) are all sets of integer nonnegative numbers with the condition u1 + . . .+ ur ≤ h+ d.
Because θ1, . . . , θr are linearly independent over the field Q, all numbers ω1, . . . , ωm are different and
m =

(h+d+r
r

)
.

Consider the polynomials

Bv(T1, . . . , Tr) = T v1
1 . . . T vr

r A(T1, . . . , Tr)

of variables T1, . . . , Tr, where v = (v1, . . . , vr) ranges over all vectors with integer nonnegative coordi-
nates satisfying the inequality v1 + . . .+ vr ≤ h. These polynomials have the degree at most h+ d by
totality of variables T1, . . . , Tr and different leading monomials. Therefore, considered to be the linear
forms of the products of powers T u1

1 . . . T ur
r with conditions u1 + . . .+ ur ≤ h+ d, they are linearly

independent over K. The number of such polynomials is s =
(
h+r
r

)
, and each of them yields the linear

relation Bv(e
θ1 , . . . , eθr) = 0 between the numbers ω1, . . . , ωm over the field K. Hence, among the

numbers ω1, . . . , ωm there are at most m− s linearly independent numbers over K. Comparing this

estimate with Corollary 1 and Proposition 1, we obtain the inequatlitym− s ≥ m

ν
, which contradicts (6).

This contradiction completes the proof of the Lindemann–Weierstrass theorem.
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