- (a) A unital Banach algebra, except the algebra of complex numbers, without nontrivial idempotent.
- (b) A unital Banach algebra with a nontrivial idempotent. (Recall that 0 and 1 are called trivial idempotents.)

We show that the Banach algebra C(X) has no nontrivial idempotent iff X is connected:

Let $0 \neq f \neq 1$ be an idempotent. Then $X = f^{-1}(\{0\}) \cup f^{-1}(\{1\})$ implies that X is not connected. Conversely if X is disconnected and $X = G_1 \cup G_2$ with open disjoint sets G_1 and G_2 , then $f(x) = \begin{cases} 1 & x \in G_1 \\ 0 & x \in G_2 \end{cases}$ is a trivial idempotent of C(X).

Comment. If A is a (not necessarily commutative) Banach algebra with an element $a \in A$ such that sp(a) is not connected, then A has a nontrivial idempotent. (cf. [B&D, Remarks of Prop. 7.9])

Ref.

[B&D] F.F. Bonsall, J. Duncan, complet normed algebras, Springer-Verlag, 1973.

A Banach algebra generated by idempotents i.e. elements x such that $x^2 = x$.

In the following, we show that the Banach algebra C(X), where X is a compact Hausdorff space, with Card(X) > 1, is generated by idempotents iff X is totally disconnected.

Recall that a topological space is said to be totally disconnected if for every distinct $x_1, x_2 \in X$, there exist disjoint open sets G_1 and G_2 such that $x_1 \in G_1, x_2 \in G_2$ and $X = G_1 \cup G_2$.

If X is totally disconnected, $x_1 \neq x_2, x_1 \in G_1, x_2 \in G_2, X = G_1 \cup G_2, G_1 \cap G_2 = \emptyset, G_1$ and G_2 are open, then the continuous function $f(x) = \begin{cases} 1 & x \in G_1 \\ 0 & x \in G_2 \end{cases}$ separates x_1 and x_2 . So the closed self-adjoint subalgebra generated by idempotent, by the Stone-Weierstrass theorem, is C(X).

Conversely, suppose that C(X) is generated by its idempotents. Let x_1 and x_2 belong to X. By Urysohn's lemma there exists a function $f \in C(X)$ such that $f(x_1) = 1$ and $f(x_2) = 0$. Every element of the self-adjoint subalgebra generated by idempotents is of the form $h = \sum_{i=1}^k \lambda_i g_i(\clubsuit)$ for some idempotents g_i and $\lambda_i \in \mathcal{C}$. Hence there is a sequence (h_n) of elements of the form (\clubsuit) such that $h_n \longrightarrow f$ uniformly on X. So $h_n(x_1) \longrightarrow 1$ and $h_n(x_2) \longrightarrow 0$. Therefore there exists a number N such that $|h_N(x_1)| > \frac{1}{2}$ and $|h_N(x_2)| < \frac{1}{2}$. So that $x_1 \in h_N^{-1}(\{z \in \mathcal{C}; |z| > 1\}) = G_1, x_2 \in h_N^{-1}(\{z \in \mathcal{C}; |z| < 1\}) = G_2, X = G_1 \cup G_2, X = G_1 \cap G_2 = \emptyset$. Thus X is totally disconnected.

A compact Hausdorff space X and subalgebras of C(X) satisfying in only three conditions of four following conditions:

- (a) uniformly closed,
- (b) separating the points of X,
- (c) containing constant functions,
- (d) closed under complex conjugation.
- (a), (b), (c); i.e. a uniform algebra:

Consider a compact subset X of \mathcal{C} and suppose that A is the uniform closure of rational functions with poles out of X.

(a), (b), (d):

With X = [a, b], let A be the set of all polynomials in one variable, but without constant terms.

(b), (c), (d):

With X = [a, b], put A to be the algebra of all polynomials in one variable.

(a), (c), (d): Let X = [a, b], x_1 and x_2 are in X and $A = \{f \in C(X); f(x_1) = f(x_2)\}$.

A Banach algebra A such that Rad(A) is a proper subset of the set $\{x; r(x) = 0\}$ of all quasi-nilpotent elements.

1.Suppose that H be a Hilbert space with $dimH \geq 2$. Let $x, y \in H - \{0\}$ and $\langle x, y \rangle = 0$. The norm of rank one operator $(x \overline{\otimes} y)(z) = \langle z, y \rangle x$ is $||x||||y|| \neq 0$. So $x \overline{\otimes} y \neq 0$. Also $(x \overline{\otimes} y)^2(z) = (x \overline{\otimes} y)(\langle z, y \rangle x) = \langle z, y \rangle \langle x, y \rangle x = 0$ so $(x \overline{\otimes} y)^2 = 0$. Hence it is quasi-nilpotent. But B(H) is semi-simple. Therefore $x \overline{\otimes} y \notin Rad(B(H)) = \{0\}$.

2.Let $A=M_2(\mathcal{C})\simeq B(\mathcal{C}^2)$. A is a C^* -algebra so $Rad(A)=\{0\}$. The element $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ has the spectrum $\{0\}$ and so $r(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix})=0$. Hence Rad(A) is not equal to $\{x; r(x)=0\}$.

An algebrically semisimple non-commutative Banach algebra.

We show that B(X), the algebra of bounded linear mappings from normed space X into X is semi-simple:

Suppose that $x_0 \neq 0$ is fixed in X. Then $I_{x_0} = \{T \in B(X); Tx_0 = 0\}$ is a left ideal in B(X).

We shall show that it is maximal. Let J be a left ideal properly containing I_{x_0} . Then $Jx_0 = \{Tx_0; T \in J\}$ is a nonzero linear subspace of X which is invariant under each $S \in B(X)$. If $Jx_0 \neq X$, then there exists a nonzero $y \in Jx_0$ and an element $z \in X$ such that $z \notin Jx_0$. If $S \in B(X)$ such that Sy = z, then $z \in Jx_0$ for Jx_0 is invariant under all elements of B(X). Thus $Jx_0 = X$. So that there exists $U \in J$ such that $Ux_0 = x_0$. For each $T \in B(X)$, $TU - UT \in I_{x_0}$. Hence $T \in J + I_{x_0} \subseteq J$. Therefore B(X) = J. Thus $Rad(B(X)) \subseteq \bigcap_{0 \neq x \in X} I_x = \{0\}$. Therefore B(X) is algebrically semisimple.

A semisimple commutative Banach algebra with a closed two-sided ideal I such that $\frac{A}{I}$ isn't semisimple.

Suppose that A is the algebra $C^m([0,1])$ of all m times continously differentiable complex-valued functions on [0,1] with the norm $\|f\| = \sum_{k=0}^m \frac{1}{k!} \sup_{x \in [0,1]} |f^{(k)}(x)|$. Let $I = \{f \in A; f(0) = f'(0) = 0\}$. Then $\frac{A}{I}$ is not semisimple, since assuming f_\circ to be $f_\circ(x) = x$, then $f_\circ^2 \in I$ and so $(f_\circ + I)^2 = f_\circ^2 + I = 0$, hence $f_\circ(x) = \lim_n \|f_\circ(x)\|^{\frac{1}{n}} = 0$. Therefore $f_\circ(x) = \lim_n \|f_\circ(x)\|^{\frac{1}{n}} = 0$. So that $f_\circ(x) = \lim_n \|f_\circ(x)\|^{\frac{1}{n}} = 0$.

A non-maximal primary ideal in a unital commutative Banach algebra A.

Suppose that A is the algebra $C^m([0,1])$ of the complex valued m times continously differentiable functions on [0,1] with the norm $||f|| = \sum_{k=0}^{m} \frac{1}{k!} \sup_{x \in [0,1]} |f^{(k)}(x)|$. Let $x_0 \in [0,1]$ and $I = \{f \in A; f(x_0) = f'(x_0) = 0\}$. Then I is a closed two-sided ideal contained in only one maximal ideal; i.e. $\{f \in A : f(x_0) = 0\}$. Note that the maximal ideals of A are of the form $I_x = \{f \in A; f(x) = 0\}$, $x \in [0,1]$.

A conclusion is that $C^m([0,1])$ is not spectral synthesis, i.e. it has a closed two-sided ideal which is not the intersection of maximal ideals containing this ideal.

Comment. The disk algebra contains a nonmaximal prime ideal, namely $\{0\}$.

An (algebrically) simple Banach algebra.

In the case commutative, consider the familiar Banach algebra \mathcal{C} . In the non-commutative case, consider the algebra $M_n(\mathcal{C})$ of all $n \times n$ matrices with entries in \mathcal{C} . Identifying $M_n(\mathcal{C})$ with $B(\mathcal{C}^n) = K(\mathcal{C}^n)$ we may regard $M_n(\mathcal{C})$ as a noncommutative C^* -algebra.

Suppose that I_{ij} is the matrix with the ij-entry 1 and 0 elswhere. Then $I_{ij}I_{\alpha\beta}=\delta_{j\alpha}I_{i\beta}$, where δ denotes Kronecker's δ . Let Δ be a nontrivial two-sided ideal in $M_n(\mathcal{C})$. There is a nonzero element $A=\sum_{i,j=1}^n a_{ij}I_{ij}$ in Δ , hence $a_{rs}\neq 0$ for some $1\leq r,s\leq n$. But $I_{rs}AI_{sr}=(\sum_{j=1}^n a_{rj}I_{rj})I_{sr}=a_{rs}I_{rr}\in\Delta$. Hence $I_{ij}=I_{is}I_{sr}I_{rj}\in\Delta$ for all $1\leq i,j\leq n$. Therefore $\Delta=M_n(\mathcal{C})$, a contradiction.

A Banach algebra A, a closed subalgebra B of A and an element $a \in A$ such that sp(A, a) = sp(B, a).

Let H be a Hilbert space, A = B(H), a = T be a nonzero element of A and also let B be a maximal commutative subalgebra containing T, then by Theorem 15.4 of [B&D, §15. Theorem 4],

$$sp(A, a) = sp(B, a).$$

Ref.

[**B&D**] F.F. Bonsall, J. Duncan, Complete normed algebras, Springer-Verlag, 1973.

- (a) A reflexive Banach algebra.
- (b) A non-reflexive Banach algebra.

- (a) \mathcal{C}^n is reflexive. Note that $(\mathcal{C}^n)^{\#\#} = (\mathcal{C}^n)^{\#} = \mathcal{C}^n$ $(n \geq 1)$.
- (b) $c_0^{\#\#} = (l^1)^{\#} = l^{\infty}$ and the inclusion $c_0 \longrightarrow l^{\infty}$ is proper. Hence c_0 is not reflexive.

An element of a Banach algebra which has no logarithm.

Consider the unilateral shift operator u on a separable Hilbert space H, then u is Fredholm of index $\operatorname{nul} u - \operatorname{def} u = 0 - 1 = -1$. If $\pi: B(H) \longrightarrow \frac{B(H)}{K(H)}$ is the quotient map and $\pi(u) = e^w$ for some w in the Calkin algebra $\frac{B(H)}{K(H)}$, then there exists an element $w' \in B(H)$ with $\pi(w') = w$, so $\pi(u) = e^w = e^{\pi(w')} = \pi(e^{w'})$. Hence $u - e^{w'} \in K(H)$. But $e^{w'}$ is invertible and so $\operatorname{ind} u = \operatorname{ind}(e^{w'}) = 0$, a contradiction.

An algebra can not be normed so that it becomes a Banach algebra.

 $A = C^{\infty}([0,1])$, the algebra of all complex valued infinitely many times continuously differentiable functions on [0,1] is semisimple, for $Rad(A) = \bigcap_{t \in [0,1]} \{ f \in C^{\infty}([0,1]); f(t) = 0 \} = 0$. $f \mapsto f'$ is a derivation on A. The Johnson theorem says that 0 is the only derivation on a semisimple Banach algebra (cf. [B&D], Theorem 18.21]). It follows that $A = C^{\infty}([0,1])$ is not a Banach algebra under any norm.

For a proof based on the Singer-Wermer theorem see [Sak2, Corollary 2.2.4]). In addition a direct proof can be found in [Aup, Corollary 4.1.12]. This example is due to Šilov([sil]).

Ref.

[Aup] B. Aupetit, A primer on spectral theory, Springer-Verlag, 1991.

[**B&D**] F.F. Bonsall, J.Duncan, complet normed algebras, Springer-Verlag, 1973.

[Sil] G.E. Silov, On a property of rings of functions, DoKl. AKad. Nauk. SSSR, 58(1974),985-8.

A commutative radical Banach algebra.

1. A Banach space with all products taken to be zero. Then every element is quasi invertible.

2. The Banach space $L^1([0,1])$ with the product $(fg)(x) = \int_0^x f(x-y)g(y)dy$ has $f_{\circ}(t) = t, 0 \le t \le 1$ as a generator since $f_{\circ}^n(t) = \frac{t^{n-1}}{(n-1)!}$, the set of polynomials in one variable is L^p -dense in C([0,1]) and C([0,1]) is L^p -dense in $L^1([0,1])$ (cf. [Rud2, Theorem 2.14]).

Moreover $||f_{\circ}^{n}|| = \int_{0}^{1} |f_{\circ}^{n}(t)| dt = \frac{1}{n!}$, so $r(f_{\circ}) = \lim_{n} ||f_{\circ}^{n}|| \frac{1}{n!} = \lim_{n} (n!) \frac{-1}{n!} = 0$. Therefore this algebra doesn't have any character. Thus it is radical al-

gebra.

Ref.

[Rud2] W. Rudin, Real and complex analysis, McGraw-Hill, 1986.

An element x of a Banach algebra such $r(x) < \parallel x \parallel$.

Consider $x=\begin{bmatrix}0&1\\0&0\end{bmatrix}$ in the C^* -algebra $M_2(\mathcal{C})\simeq B(\mathcal{C}^2)$. Then $sp(x)=\{0\}$. So r(x)=0. But $\parallel x\parallel=1$ (since its associated operator $T(z_1,z_2)=(z_2,0)$ has norm 1).

A commutative Banach algebra A with a unique ideal; i.e. Rad(A).

Suppose that $H = L^2(0,1)$ with respect to the Lebesgue measure. Then $(Vf)(x) = \int_0^x f(t)dt$ defines an operator $V \in B(H)$ which is called Volterra operator. Clearly the closure A of $\{p(V); p \text{ is a polynomial in } z\}$ in B(H) is the commutative Banach subalgebra of B(H) generated by V and the identity operator I.

An straightforward computation shows that $(V^n f)(x) = \int_0^x \frac{(x-t)^{n-1}}{(n-1)!} f(t) dt$ and so $||V^n|| \le \frac{1}{(n-1)!}$ and $r(V) = \lim_n ||V^n||^{\frac{1}{n}} = 0$. Hence $sp(B(H), V) = \{0\}$. But by [Con, VII.Theorem 5.4], sp(A,V) is equal to the polynomially convex hull of sp(B(H), V), hence $sp(A, V) = \{0\}$. But the maximal ideal space of A is homeomorphic to $sp(A, V) = \{0\}$. So the only character on A is $\phi(\lambda) = \lambda$ and $\phi(x) = 0$ for $x \in A - \mathcal{C}$. Since ϕ is continuous, the unique maximal ideal space is $Rad(A) = Ker(\phi) =$ the closure of $\{p(V); p \text{ is a polynomial in } z \text{ and } p(0) = 0\}$.

Ref.

[Con]J.B. Conway, A course in functional analysis, New York, Springer-Verlag, 1990.

A Banach algebra A that is a topological direct sum (as a Banach space) of a pair of its Banach subalgebras

which are isometrically isomorphic to A.

Consider $A = l^{\infty}$. Define $E = \{(x_n) \in l^{\infty} ; x_{2n} = 0\}$ and $F = \{(x_n) \in l^{\infty} ; x_{2n-1} = 0\}$. Obviously E and F are closed subalgebras of l^{∞} . Moreover A = E + F and $E \cap F = \{0\}$. So E is a complemented subspace of A with F as a complementary subspace. In addition, $\varphi((x_1, x_2, x_3, \ldots)) = (0, x_1, 0, x_2, 0, x_3, \ldots)$ is an isometrically isomorphism between l^{∞} and E. One can similarly define an isomorphism between l^{∞} and F. Note that if E is a complemented infinite dimensional subspace of l^{∞} then E is isomorphic to l^{∞} . (cf. [J. Lindenstranss, On complemented subspaces of m. Israel J. Math., 5, 1967, 153-156])

A Banach algebra with a proper dense two-sided ideal.

1. $C_c(\mathcal{R}) = \{ f \in C_0(\mathcal{R}); \text{ supp}(f) = \text{ the closure of } \{ x \in \mathcal{R}; f(x) \neq 0 \} \text{ is compact } \}$ is a dense ideal of $C_0(\mathcal{R})$. Note that the function f defined by

$$f(x) = \begin{cases} \frac{1}{1+x} & x \ge 0\\ \frac{1}{1-x} & x < 0 \end{cases}$$

belongs to $C_0(\mathcal{R}) - C_c(\mathcal{R})$.

2. $A = \{f \in C([0,1]); f(0) = 0\}$ is a closed subalgebra of C([0,1]) not containing the constant function 1. So A is a non-unital Banach algebra. Let $f_{\circ}(t) = t$, $t \in [0,1]$. $I = \{f_{\circ}g; g \in C[0,1]\}$ is a proper ideal of A (since if

$$h(t) = \begin{cases} t \sin\frac{1}{t} & t \in (0, 1] \\ 0 & t = 0 \end{cases}$$

and for some $g \in C[0,1]$, tg(t) = h(t) whenever $t \in [0,1]$ then $\lim_{t\to 0} \sin\frac{1}{t} = g(0)$, a contradiction). By the Stone-Weierstrass theorem, each $f \in A$ is the uniform limit of a sequence (p_n) of polynomials with $p_n(0) = 0$. Moreover $t \longmapsto \frac{p_n(t)}{t}$ belongs to C[0,1] and $t\frac{p_n(t)}{t} \longrightarrow f(t)$ uniformly on [0,1]. So f belongs to the closure of I. Hence I is dense in A.

A Banach algebra A in which every singular element is a left or right topological divisor of zero.

Let A = B(X), the Banach algebra of bounded linear mappings from a Banach space X into X, and $T \in Sing(A)$. For $y \in X$ and $g \in X$, the rank one operator $y \overline{\otimes} g \in B(X)$ is defined by $(y \overline{\otimes} g)(z) = g(z)y$ $(z \in X)$.

If T isn't 1-1, then there exists an element $x \neq 0$ such that Tx = 0. So if $f \in X^{\#}$ and f(x) = 1, then $T(x \overline{\otimes} f) = Tx \overline{\otimes} f = 0$. So T is a left divisor of zero.

If $T(X) \neq X$ and $T(X)^- \neq X$, then by the Hahn-Banach theorem there exists a non-zero functional f such that f(T(X)) = 0. Therefore $(x \overline{\otimes} f)T = 0$, for all $x \in X$. Thus T is a right divisor of zero.

Finally if $T(X) \neq X$ and $T(X)^- = X$, then there exists a sequence (y_n) in X satisfying $||y_n|| = 1$ and $Ty_n \longrightarrow 0$. If $f \in X^\#$ with ||f|| = 1 and $U_n = y_n \overline{\otimes} f$, then $||U_n|| = ||y_n|| \ ||f|| = 1$ and $||TU_n|| = ||Ty_n \overline{\otimes} f|| \leq ||Ty_n||$ and hence $TU_n \longrightarrow 0$. Thus T is a right topological divisor of zero.

Two element a,b of a Banach algebra such that neither $r(ab) \le r(a)r(b)$ nor $r(a+b) \le r(a)r(b)$.

Consider $a=\begin{bmatrix}0&1\\0&0\end{bmatrix}$ and $b=\begin{bmatrix}0&0\\1&0\end{bmatrix}$ in $M_2(\mathcal{C})\simeq B(\mathcal{C}^2)$. Then $sp(a)=\{0\}, sp(b)=\{0\}, sp(a+b)=\{-1,1\}, sp(ab)=\{0,1\}$ and we have required inequalities.

A normed algebra with non-open group of invertibles (and so the algebra is not Banach).

Let $A = \mathcal{C}[z]^1$, then $Inv(\mathcal{C}[z]) = \mathcal{C} - \{0\}$, hence the elements $p_n(z) = 1 + \frac{z}{n}(n \in \mathcal{N})$ aren't invertible. But $\lim_n p_n(z) = 1 \in Inv(\mathcal{C}[z])$. Therefore A - Inv(A) isn't closed.

¹The set C[z] of all polynomials in an indeterminate z with complex coefficients under usual operations on polynomials and with the norm $||p|| = \sup_{|\lambda| \le 1} |p(\lambda)|$ is a normed algebra.

A commutative Banach algebra whose unit ball isn't norm compact.

The unit ball of C([0,1]) is not compact with respect to the supremum norm, since if $p_n(x) = x^n$, then $||p_n|| = 1$ and (p_n) has no convergent subsequence.

It's well-known that a normed space Y is finite dimensional iff $\{y \in Y; ||y|| \le 1\}$ is compact (cf. [Ker, Theorem 2.5-5]). C([0,1]) is infinite dimensional, hence its unit ball is not compact.

Ref.

[Ker] E. Kreyszig, Introductory functional analysis with applications, John Wiley & Sons, 1978.

A normed algebra A whose radical is isomorphic to C.

Suppose that $A = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}; a, b, c \in \mathcal{C} \right\}$. Then A is a subalgebra of $M_2(\mathcal{C}) \simeq B(\mathcal{C}^2)$ and the only its characters are $f(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = a$ and $g(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = c$, since

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad , \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad , \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

is a basis for A. Therefore $Rad(A)=\{\begin{pmatrix}0&b\\0&0\end{pmatrix};b\in\mathcal{C}\}$ is isometrically isomorphic to \mathcal{C} .

- (a) A separable Banach algebra.
- (b) A non-separable Banach algebra.

- (a) $\{r_1 + ir_2; r_1, r_2 \in \mathcal{Q}\}$ is a countable dense subset of \mathcal{C} . Hence \mathcal{C} is a separable Banach algebra.
- (b) l^{∞} isn't separable. In fact if $S = \{a_1, a_2, \cdots, \}$ is a countable set in $l^{\infty}, a_n = (a_n^k)_{k \in \mathcal{N}}$, and $b_n = \begin{cases} 0 & |a_n^n| \geq 1 \\ 2 & |a_n^n| < 1 \end{cases}$, then $b = (b_n) \in l^{\infty}$ and for all $n, \parallel b a_n \parallel_{\infty} \geq |b_n a_n^n| \geq 1$. So that the neighborhood of b with the radius 1 doesn't intersect S. Thus S isn't dense in l^{∞} .

For another proof see [A&B, Problem 25.7].

Ref.

[A&B] C.D. Aliprantis and O. Burkinshaw, Problems in real analysis, Acad. Press, 1990.

Two non-isomorphic Banach algebras with homeomorphically isomorphic invertible groups.

1. Let $A_1 = C([-1, \frac{-1}{2}] \cup [\frac{1}{2}, 1])$ and $A_2 = C([0, 1] \cup \{2\})$. Since $[0, 1] \cup \{2\}$ isn't homeomorphic to $[-1, \frac{-1}{2}] \cup [\frac{1}{2}, 1]$, A_1 isn't isomorphic to A_2 . Also the function which sends $x \in Inv(A_1)$ to $y \in G_2$ defined by

$$y(t) = \begin{cases} x(t-1) & t \in [0, \frac{1}{2}] \\ \left[x(\frac{-1}{2})/x(\frac{1}{2}) \right] x(t) & t \in [\frac{1}{2}, 1] \\ x(\frac{1}{2})/x(\frac{-1}{2}) & t = 2 \end{cases}$$

is the desired isomorphism.

Ref.

[Zel] W. Zelazko, Banach algebras, Elsevier Publishing Company, 1973.

A commutative Banach algebra whose unit ball has no extreme point (and so it isn't the dual space of any Banach space by the Krein-Milman theorem (cf. [Con, Theorem 7.4])).

The unit ball of c_0 has no extreme point. For see this, let (x_n) belongs to the ball of c_0 . $\lim_n x_n = 0$, so there exists a number N such that for all n > N, $|x_n| < \frac{1}{2}$. Let $y_n = z_n = x_n$ for $n \le N$, and let $y_n = x_n + 2^{-n}$ and $z_n = x_n - 2^{-n}$ for n > N, then (y_n) and (z_n) belong to the unit ball of c_0 and $(x_n) = \frac{1}{2}(y_n) + \frac{1}{2}(z_n)$. So (x_n) isn't is not an extreme point.

Ref.

[Con]J.B. Conway, A course in functional analysis, New York, Springer-Verlag, 1990.

- (i) A singly generated Banach algebra
- (ii) A Banach algebra can not be singly generated

- (i) $C_{\circ}((0,1])$ is singly generated by the inclusion function $t \mapsto t$, by the Stone-Weierstrass theorem.
 - (ii) $C(\Gamma)$, where Γ is the unit circle in plane.

A Banach algebra without any topological divisor of zero.

Clearly \mathcal{C} has no topological divisor of zero. In fact \mathcal{C} is the only Banach algebra with this property. (cf. [W. Zelazco, On generalized topological divisors of zero in real m-convex algebras, (1967) 241-244.]).

A commutative Banach algebra A without any minimal ideals.

Let $A = \mathcal{A}(\Delta)^1$, J be a minimal ideal and, for $n \geq 0$, $I_n = \{f \in A ; f(0) = f'(0) = \ldots = f^{(n)}(0) = 0\}$ (recall $f^{(0)} = f$). Then $(I_n)_{n\geq 0}$ is a strictly decreasing sequense of (primary) ideals. Assuming $0 \neq f \in J$, then $0 \neq z^{n+1} f \in I_n \cap J$. So $I_n \cap J = J$. Hence $(\bigcap_{n=1}^{\infty} I_n) \cap J = J$ and so J = 0, since $\bigcap_{n=1}^{\infty} I_n = \{0\}$. Thus \mathcal{A} has no minimal ideal.

¹Let Δ denote the closed unit disc $\{z \in \mathcal{C}, |z| \leq 1\}$. Suppose that $A(\Delta)$ denoted the set of all elements of $C(\Delta)$ which are analytic on the interior of Δ . $A(\Delta)$ is a closed subalgebra of $C(\Delta)$

Two elements $x,y \ (xy \neq yx)$ of a Banach algebra A such that $e^x.e^y \neq e^{x+y}$.

Consider $A = B(l^2)$ and the unilateral shift operator T on l^2 , defined by $T(x_1, x_2, ...) = (0, x_1, x_2, ...)$ and its adjoint $T^*(x_1, x_2, ...) = (x_2, x_3, ...)$. Assuming $\xi_k = (\delta_{kn})_{n \in \mathcal{N}}, k \in \mathcal{N}; \langle e^T e^{T^*} \xi_1, \xi_1 \rangle = \langle e^T \xi_1, \xi_1 \rangle = \langle \xi_1, \xi_1 \rangle = 1$, since $T^* \xi_1 = 0$ and $T \xi_1 = \xi_2$. Also $(T + T^*)(\xi_1) = \xi_2, (T + T^*)^2(\xi_1) = \xi_1 + \xi_3, ...$ and so $\langle e^{T+T^*} \xi_1, \xi_1 \rangle = \langle \xi_1, \xi_1 \rangle + \langle \xi_2, \xi_1 \rangle + \langle \frac{1}{2!} (\xi_1 + \xi_3), \xi_1 \rangle + ... \rangle 1$. Hence $e^T \cdot e^{T^*} \neq e^{T+T^*}$.

A reflexive Banach algebra whose dual is also a Banach algebra.

The Banach algebra $l^{p_1}, 1 has the conjugate <math>l^q, q = \frac{p}{p-1}$, in addition $(l^q)^\# = l^p$.

Let (Ω, μ) be a measure space and $L^p(\Omega, \mu)$ for $1 \leq p < \infty$ be the set of all complex valued measurable functions f on Ω (we assume f is equal to g if f = g a.e.[μ]) for which $||f||_p = (\int_{\Omega} |f|^p d\mu)^{\frac{1}{p}} < \infty$. $L^p(\Omega, \mu)$ with the norm $||.||_p$ is a Banach space and is a Hilbert space iff p = 2. $L^p(\Omega, \mu)$ denoted by $l^p(\Omega)$ if μ is counting measure. In particular, $l^p(\mathcal{N})$ denoted by l^p .

If $1 \leq p < \infty$, then l^p can be regarded as a commutative Banach algebra with coordinatewise multiplication. (For p > 1, $||fg||_p \leq ||f||_p ||g||_p$ is a conclusion of Hölder inequality.) The l^p , $1 \leq p < \infty$, with the involution $f \longmapsto \overline{f}$ is an involutive Banach algebra.

A Banach algebra A that cannot be a (vector space) direct sum of its radical Rad(A) and a Banach algebra B that is homeomorphically isomorphic with A/Rad(A).

Consider the Banach algebra l^2 and the dense subalgebra l^2_0 of l^2 consisting of the sequences which vanish out of a finite set. Let A_0 be the vector space direct sum $l^2_0 \oplus \mathcal{C}$. A_0 is an algebra with $(x,\alpha)(y,\beta)=(xy,0),x,y\in l^2,\alpha,\beta\in\mathcal{C}$. Also $||(x,\alpha)||=\max(||x||,|\alpha-\sum_{n=1}^\infty x(n)|)$ is a norm on A_0 . Let A is the completion of A_0 . $Rad(A)=\mathcal{C}(0,1)$. If $(x,\alpha)\in A_0$ and $[x,\alpha]$ denotes the image of (x,α) in A/Rad(A), then $[x,\alpha]\mapsto x$ defines an isometric isomorphism of $A_0/RadA$ into l^2_0 which can be extended to an isometric isomorphism of A/RadA onto l^2 . Suppose that there exists a homeomorphic isomorphism of l^2 with a subalgebra l^2_0 of l^2_0 . Let l^2_0 denotes l^2_0 in l^2_0 with a subalgebra l^2_0 of l^2_0 with a subalgebra l^2_0 of l^2_0 and l^2_0 with a subalgebra l^2_0 of l^2_0 with a subalgebra l^2_0 of l^2_0 of l^2_0 with a subalgebra l^2_0 of l^2_0 with a subalgebra l^2_0 of l^2_0 with a subalgebra l^2_0 of l^2_0 of l^2_0 of l^2_0 with a subalgebra l^2_0 of l^2_0 of

Ref.

[Ric] C.E. Rickart, General theory of Banach algebras, Princeton, Van Nastrand, 1960.

A commutative Banach algebra where 0 is the only nilpotent.

A C^* -algebra is commutative if and only if it has 0 as its unique nilpotent element. This is due to I. Kaplansky.(cf. [I. Kaplansky, Ring isomorphisms of Banach algebras, Canada. J.Math. 6 (1954), 374-381.])

A non-commutative Banach algebra in which 0 is the only quasi-nilpotent.

Let A be the free algebra on two symbols w, v, i.e. the algebra of all finite linear combinations of words in u and v. The set of all such words is countable, $\{w_n\}$, and we take the standard enumeration given by $u, v, u^2, uv, v^2, u^3, u^2v, \ldots$ Let B be the algebra of all infinite series $x = \sum_{n=1}^{\infty} \alpha_n w_n$, where $||x|| = \sum_{n=1}^{\infty} ||\alpha_n| < \infty$. Then B is a non-commutative Banach algebra. Let $x \in B, x \neq 0$, and let α_p be the first non-zero coefficient in the series $\sum_{n=1}^{\infty} \alpha_n w_n$. Then the coefficient of w_p^m in x^m is precisely α_p^m and so $||x^m|| \geq |\alpha_p|^m$ $(m = 1, 2, 3, \ldots), r(x) \geq |\alpha_p| > 0$. Note that B is an infinite dimensional non-commutative Banach algebra in which the set of quasi-nilpotents coincides with the set of nilpotents.

Ref.

J. Duncan and A.W. Tullo, Finite dimensionality, nilpotents and quasi-nilpotents in Banach algebras, Proc. of the Edin. math. Soc., vol 19(Series II), Part 1, 1974.

A non-commutative radical Banach algebra which is an integral domain.

Let A be the free algebra on two symbols w, v, i.e. the algebra of all finite linear combinations of words in u and v. The set of all such words is countable, $\{w_n\}$, and we take the standard enumeration given by $u, v, u^2, uv, v^2, u^3, u^2v, \ldots$ Let $\gamma(w_n)$ denote the length of the word w_n , and let C be the algebra of all infinite series $x = \sum_{n=1}^{\infty} \alpha_n w_n$ where $||x_n|| = \sum \frac{|\alpha_n|}{\gamma(w_n)!} < \infty$. Then C is clearly a non-commutative Banach algebra and an integral domain. Let $x \in C$ and let k be a positive integer. We have

$$||x^{k}|| \leq \sum_{n_{i}} \frac{|\alpha_{n_{1}}||\alpha_{n_{2}}| \dots |\alpha_{n_{k}}|}{\gamma(w_{n_{1}}w_{n_{2}} \dots w_{n_{k}})!}$$

$$= \sum_{n_{i}} \frac{\gamma(w_{n_{1}})! \dots \gamma(w_{n_{k}})! |\alpha_{n_{1}}|}{\{\gamma(w_{n_{1}}) + \dots + \gamma(w_{n_{k}})\}! \gamma(w_{n_{1}})!} \dots \frac{|\alpha_{n_{k}}|}{\gamma(w_{n_{k}})!}$$

$$\leq \frac{1}{k!} ||x||^{k}.$$

Hence r(x) = 0.

Ref.

J. Duncan and A.W. Tullo, Finite dimensionality, nilpotents and quasi-nilpotents in Banach algebras, Proc. of the Edin. math. Soc., vol 19(Series II), Part 1, 1974.

A non-reflexive Banach space isometric with its second conjugate space.

For $x = (x_1, x_2, x_3, ...)$, let $||x|| = \sup[\sum (x_{p_i} - x_{p_{i+1}})^2 + (x_{p_{n+1}} - x_{p_1})^2]^{\frac{1}{2}}$ where supremum is over all positive integers n and all finite increasing sequences of at least two positive integers $p_1, p_2, ..., p_{n+1}$. Let B be the Banach space of all x for which ||x|| is finite and $\lim_n x_n = 0$. Then B is isometric with $B^{\#\#}$, but is isometric under natural mapping with a closed maximal linear subspace of $B^{\#\#}$. This example is due to R.C. James (cf. [Jam]).

Ref.

[Jam] R.C.James, A non-reflexive Banach space isometric with its second conjugate space, Proc.of.nat.Acad. of sci., Vol 37, No 3, pp. 174-177, 1951.

A Banach algebra A with a Banach subalgebra B and an element $b \in B$ such that sp(A,b) is a proper subset of sp(B,b).

Consider $\mathcal{A}(\Delta)^1$ and the isometric isomorphism $f \longmapsto f|_T$, from $\mathcal{A}(\Delta)$ onto the closed subalgebra B of A = C(T) generated by 1 and inclusion $z: T \to \mathcal{C}$ (T is the unit circle). Then $sp(B,z) = sp(\mathcal{A}(\Delta),z) = \Delta$ and sp(A,z) = T.

Let Δ denote the closed unit disc $\{z \in \mathcal{C}, |z| \leq 1\}$. Suppose that $A(\Delta)$ denoted the set of all elements of $C(\Delta)$ which are analytic on the interior of Δ . $A(\Delta)$ is a closed subalgebra of $C(\Delta)$.

A Banach algebra with an unbounded approximate identity.

Consider l^p as a Banach algebra with coordinatewise operations. Let $e_n = \underbrace{(1,1,1,\ldots,1,0,0,\ldots)}$. Then $\sup_n ||e_n|| = \sup\{\sqrt[p]{n} \; ; \; n \in N\} = \infty$, and for every $x = (\alpha_n) \in l^2$, $\lim_n ||xe_n - x|| = \lim_n (\sum_{k=n+1}^\infty |\alpha_k|^p)^{\frac{1}{p}} = 0$. Thus (e_n) is required approximate identity.

A topologically nilpotent Banach algebra. (A Banach algebra A is called topologically nilpotent if the quantity $N_A(n) = \sup\{\|x_1...x_n\|^{\frac{1}{n}}; x_i \in A; \|x_i\| \le 1, 1 \le i \le n\}$ tends to zero as $n \to \infty$).

The Banach algebra C[0,1] with the supremum norm $\|.\|$ and convolution multiplication is topologically nilpotent:

Defining
$$u \in C([0,1])$$
 by $u(t) = 1$ $(0 \le t \le 1)$, we have $u^n(t) = \frac{t^{n-1}}{(n-1)!}$
 $(n = 1, 2, ...)$ and so $||u^n|| = \frac{1}{(n-1)!}$. For arbitrary $f_1, ..., f_n \in C([0,1])$, $|f_1 * f_2 * ... * f_n)(t)| \le ||f_1|| ... ||f_n|| u^n(t)$. Hence $(\frac{||f_1 * ... * f_n||}{||f_1|| ... ||f_n||})^{\frac{1}{n}} \le \frac{1}{((n-1)!)^{\frac{1}{n}}}$. Now note that $\lim_n \frac{1}{((n-1)!)^{\frac{1}{n}}} = 0$.

Ref.

P.G. Dixon, G. A. Willis, Approximate identities in extensions of topological nilpotent Banach algebras., Proc. Royal of Edin., 122A, 45-52, 1992.

A non-topologically nilpotent Banach algebra.

- 1. The algebra \mathcal{C} of complex numbers.
- 2. The Volterra algebra $L^1[0,1]^1$ isn't topologically nilpotent; For establishing this, consider $x_i(t) = \begin{cases} 2^i & 0 \le t \le 2^{-i} \\ 0 & 2^{-i} \le t \le 1 \end{cases}$. Then $||x_i|| = 1$ $(i = 1, 2, \ldots)$ and for all n, $||x_1 \ldots x_n|| = 1$.

The Banach space $L^1([0,1])$ with the product $(fg)(x) = \int_0^x f(x-y)g(y)dy$ is a non-unital commutative Banach algebra and called Volterra algebra.

A finite dimensional commutative algebra with nilpotent radical, an identity modulo the radical, but no global identity.

Let $A = \mathcal{C}^2$ with multiplication (a,b)(c,d) = (ac,0) $(a,b,c,d \in \mathcal{C})$. Clearly $A^2 = A$. Its radical is $R = \{(0,b); b \in \mathcal{C}\}$ and $\frac{A}{R} \simeq \mathcal{C}$. The identity of $\frac{A}{R}$ lifts to the idempotent (1,0) in A [Ric, Theorem 2.3.9], but there is no identity in A. Ref.

[Ric] C.E. Rickart, General theory of Banach algebras, Princeton, Van Nastrand, 1960.

A Banach algebra having no bounded approximate identity.

 $\{xy \; ; \; x,y \in l^2\}$ is a proper subset of Banach algebra l^2 equipped with the coordinatewise operations. In fact $(\frac{1}{n}) \in l^2$ and if $x_n y_n = \frac{1}{n}$, then there exist an integer N such that for all n > N, $|x_n| \ge \frac{1}{\sqrt{n}}$ or for all n > N, $|y_n| \ge \frac{1}{\sqrt{n}}$, and hence $(x_n) \notin l^2$ or $(y_n) \notin l^2$. Now Cohen's factorization theorem [B&D,§11. Corollary 11] implies that l^2 has no bounded approximate identity.

Comment. Using BA37, we conclude that the Banach algebra l^2 has neither bounded approximate identity nor unbounded one.

Ref.

[B&D] F.F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, 1973.

A Banach space with a non-complemented closed subspace.

 c_{\circ} is a non-complemented closed subspace of $l^{\infty}.$

(cf. [R.S. Philips, On linear transformations, Trans Amer Math. Soc. 48 (1940), 516-554.])

Newmann and Rudin gave another example, i.e. the subspace of C(T) consisting of the boundary values of analytic functions.

(cf. [K. Hofman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J. 1962.])

A complete metrizable linear space whose metric cannot be obtained from a norm.

1. The linear space S consisting of all complex sequences with the metric $d((x_i),(y_i)) = \sum_{i=1}^{\infty} \frac{|x_i - y_i|}{2^i(1 + |x_i - y_i|)}$ is a complete metric space. Since $d(2(1,1,\cdots),(0,0,\cdots)) \neq 2d((1,1,\cdots),(0,0,\cdots))$, the space (S,d) is not normable.

If $(X, \| . \|)$ is a normed linear space then $d(x, y) = \begin{cases} \| x - y \| + 1 & x \neq y \\ 0 & x = y \end{cases}$ is a metric on X, but can not be obtained from a norm, since if x is a nonzero vector of X then $d(2x, 0) \neq 2d(x, 0)$.

Comment. $C^{\infty}([0,1])$ with its usual topology is a complete metrizable linear space whose topology cannot be obtained from a norm.

Two non-isometrically isomorphic spaces with the same duals. So that a such dual space could not be a W*-algebra under any multiplication and involution.

 c_0 and c are both closed subspaces of l^{∞} . In addition for each $x=(x_n)\in l^1$, $\rho_x:c_0\longrightarrow \mathcal{C}$ given by $(y_n)\mapsto \sum_{n=1}^\infty x_ny_n$ is a bounded linear functional on c_0 with the norm $\|\rho_x\|=\|x\|$. Clearly $c_0^{\#}$ is isometrically isomorphic to l^1 . Also for each $x=(x_n)\in l^1$, $\eta_x:c\longrightarrow \mathcal{C}$ given by $(y_n)\mapsto x_1\lim_n x_n+\sum_{n=1}^\infty x_ny_n$ is a bounded linear functional on c with the norm $\|\eta_x\|=\|x\|$. Obviously $c^{\#}$ is isometrically isomorphic to l^1 . But by BA25.DVI the closed unit ball of c_0 has no extreme point while the closed unit ball c contains at least $(1,1,1,\cdots)$ as an extreme point (since if $1=tx_n+(1-t)y_n$ with $|x_n|\leq 1$ and $|y_n|\leq 1$, then $1=tRex_n+(1-t)Rey_n$ for all n, so that $Rex_n=Rey_n=1$ and hence $x_n=y_n=1$ for each n). Thus c_0 and c_1 are not isometrically isomorphic.

Now by [Sak1, Corollary 1.13.3], l^1 can not be a W^* -algebra.

Re.

[Sak1] S. Sakai, C^* -algebras and W^* -algebras, Springer-Verlag, 1971.

A Banach space X such that all its closed subspaces are complemented.

Any Hilbert space.

Note that Lindenstrauss and Tzafriri, showed that each Banach space for which every closed subspace is complemented is isomorphic to a Hilbert space (cf. [J. Lindenstrauss and L. Tzafiriri, On complemented subspaces problem. Israel J. Math., 2, 1984, 375-378].)

A Banach space which isn't metrizable in weak topology.

Every Hilbert space has this property (cf. [Hal, problem 21]).

Comment. It is probably true that no infinite dimensional Banach space is metrizable in the weak topology.

Ref.

[Hal] P.R. Halmos, A Hilbert space problem book, Princeton, Van Nostrand, 1967.

A Banach space which is not an inner product space.

The supremum norm on C[a,b] can not be obtained from an inner product. Since if f(t)=1 and $g(t)=\frac{t-a}{b-a}$, then $\parallel f\parallel=\parallel g\parallel=1,\parallel f-g\parallel=\sup\{|1-\frac{t-a}{b-a}|;t\in[a,b]\}=1$ and $\parallel f+g\parallel=\sup\{|1+\frac{t-a}{b-a}|;t\in[a,b]\}=2$ and so the parallelogram equality $\parallel f+g\parallel^2+\parallel f-g\parallel^2=2\parallel f\parallel^2+2\parallel g\parallel^2$ (which is satisfied in every inner product space) isn't held.

Comment. Indeed this Banach space is not an inner product space in any equivalent norm.

An incomplete inner product space.

The linear space C[a,b] of all continuous complex-valued functions on [a,b] with the inner product $\langle f,g \rangle = \int_a^b f(x)\overline{g(x)}dx$ is not complete with respect to the norm $||f|| = \langle f,f \rangle^{\frac{1}{2}} = (\int_a^b |f(x)|^2 dx)^{\frac{1}{2}}$. In fact the sequence (f_n) where

$$f_n(x) = \begin{cases} 0 & a \le x < \frac{b+a}{2} \\ (n+n_0)(x-\frac{b+a}{2}) & \frac{b+a}{2} \le x \le \frac{b+a}{2} + \frac{1}{n+n_0} \\ 1 & \frac{b+a}{2} + \frac{1}{n+n_0} < x \le b \end{cases}$$

 $(n_0 \text{ is a natural number greater than } \frac{2}{b-a})$ is a Cauchy but not convergent.

Two closed densely defined operators T and S on a Hilbert space such that T+S isn't closable.

Consider a separable infinite dimensional Hilbert space H with an orthonormal basis (ξ_n) . Let $D = \{\eta \in H; \sum_{n=1}^{\infty} n^4 | < \eta, \xi_n > |^2 < \infty\}, \zeta = \sum_{n=2}^{\infty} n^{-1}\xi_n$, and define the operators S and T with the domain D, which is dense in H, by

$$S\eta = \sum_{n=2}^{\infty} n^2 < \eta, \xi_n > \xi_n \quad , \quad T\eta = S\eta + < S\eta, \zeta > \xi_1 \quad (\eta \in D).$$

Then -S and T are closed densely defined and T + (-S) isn't closable. (cf. Problem 2.8.43 of [K&R1])

Ref

[K&R1] R.V. Kadilon and J.R. Ringrase, Fundamentals of the theory of operator algebras (I), Acad. Press, 1983.

A Hilbert space whose Hamel dimension and Hilbert dimension are different.

The Hilbert space l^2 has the orthonormal basis (e_n) with $e_n(m) = \delta_{mn}$; $m, n \in \mathbb{N}$. Hence its Hilbert dimension is \aleph_0 . But the set of all sequences $x_{\alpha} = \langle 1, \alpha, \alpha^2, \alpha^3, \dots \rangle, 0 < \alpha < 1$ is a linearly independent uncountable subset of l^2 . Thus the Hamel dimension of l^2 isn't \aleph_0 .

Comment. This Hilbert dimension is probably the only one which this can happen.

A nonclosable unbounded operator on a Hilbert space.

Let H be a separable Hilbert space with the standard orthonormal basis (ξ_n) . Define T on H by $T\xi_n=n\xi_1$ and extend T to the dense linear subspace D(T) of finite linear combinations of basis elements ξ_n (we denote the extension of T by the same T). Then T is a densely defined unbounded operator on H (since $\lim_{n\to 0} \frac{\parallel T\xi_n \parallel}{\parallel \xi_n \parallel} = \lim_{n\to 0} n = \infty$). Moreover T is not closable, for $\lim_{n\to 0} \frac{\xi_n}{n} = 0$ but $\lim_{n\to 0} T(\frac{\xi_n}{n}) = \xi_1$.

On a separable infinite dimensional Banach space X there exists another norm under which X isn't separable.

Suppose that $\{e_i; i \in I\}$ is a Hamel basis for X and I is countable. For each $i \in I$, let X_i denote the linear span of $\{e_1, e_2, \cdots, e_n\}$, then $X = \bigcup_{i=1}^n X_i$. But the X_i are proper closed subspaces of X and so are nowhere dense, that is impossible by the Baire category theorem. Thus I is uncountable. Let $a \in X$, $a = \sum_{i \in I} \lambda_i e_i$ where all λ except finitely many are zero. Set $\| a \|' = \sum_{i \in I} |\lambda_i|$. Then $\| \cdot \|'$ is obviously a norm on X. For $i \neq j$, $\| e_i - e_j \|' = 2$ and I is uncountable, hence I is uncountable subset.

Notation

In this site we use $X^{\#}$ for the topological dual of a normed space X, S' for the commutant of a subset S of B(H) and T^* for the Hilbert adjoint of an operator T in B(H) for any Hilbert space H.

Main Examples

(I) The set of complex numbers C with usual addition, multiplication and the absolute value as a norm is a unital commutative Banach algebra.

(II) \mathcal{C}^n with the coordinatewise addition, scalar multiplication and the inner product

$$\langle (z_1,\ldots,z_n),(w_1,\ldots,w_n)\rangle = \sum_{i=1}^n z_i \overline{w_i}$$
 (1)

is a Hilbert space.

(III) The space C^2 (see (II)) with the product (a,b)(a',b')=(aa',ab'+a'b) is a unital commutative Banach algebra.

(IV) Let X be a non-empty set and Y is a normed (Banach) space. Then the set $l^{\infty}(X,Y)$ of all bounded mappings of X into Y with the pointwise addition $(f+g)(x) = f(x) + g(x), x \in X$; poinwise scalar multiplication $(\lambda f)(x) = \lambda f(x), \lambda \in \mathcal{C}, x \in X$; and supremum norm $||f|| = \sup\{|f(x)|; x \in X\}$ is a normed (Banach) space. If Y is normed algebra then $l^{\infty}(X,Y)$ with the pointwise product (fg)(x) = f(x)g(x) is a normed algebra.

We denote $l^{\infty}(E, \mathcal{C})$ with $l^{\infty}(E)$ that is a unital cammutative C^* -algebra under the involution $f^* = \overline{f}$, the conjugate of f. Also $l^{\infty}(\mathcal{N})$ is denoted by l^{∞} .

The set of all convergent sequences of complex numbers, c, is a closed *-subalgebra of l^{∞} and the set of all elements of c converging to zero, c_0 , is a closed *-subalgebra of c.

(V) If X is a topological space, then the set $C_b(X)$ of all bounded continuous complex valued functions on X is a closed *-subalgebra of $l^{\infty}(X)$ containing the constant function 1. So $C_b(X)$ is a unital commutative C^* -algebra.

(VI) If X is a locally compact Hausdorff space, then the set $C_0(X)$ of all continuous complex valued functions on X vanishing at infinity (i.e. for each $\varepsilon > 0$, the set $\{x \in X; |f(x)| \geq \varepsilon\}$ is compact) is a closed *-subalgebra of $l^{\infty}(X)$ and so is a commutative C^* -algebra.

 $C_0(X)$ is unital iff X is compact. Each non-unital commutative C^* -algebra is of this form (cf. [Mur]).

(VII) If X is a compact Hausdorff space, then the set C(X) of all continuous complex functions on X is exactly $C_0(X)$ and so is a unital commutative C^* -algebra. Each unital commutative C^* -algebra is of this form (cf. [Mur]). By ([K&R1, Th. 5.3.1]), An abelian W^* -algebra is isometrically *-isomorphic to C(X) for some extremely disconnected compact Hausdorff space X. (A topological space is called extremely disconnected or Stonean if the closure of any open set is open).

(VIII) Let Δ denote the closed unit disc $\{z \in \mathcal{C}, |z| \leq 1\}$. Suppose that $A(\Delta)$ denoted the set of all elements of $C(\Delta)$ which are analytic on the interior of Δ . $A(\Delta)$ is a closed subalgebra of $C(\Delta)$ (Since if $f_n \in A(\Delta)$ and (f_n) converges to $f \in C(\Delta)$ in the norm of $C(\Delta)$ and γ is a simple closed path in the interior of Δ , then $\lim_{n\to\infty} \int_{\gamma} f_n(z)dz = \int_{\gamma} f(z)dz$ but by Cauchy's theorem $\int_{\gamma} f_n(z)dz = 0 (n \in \mathcal{N})$. So $\int_{\gamma} f(z)dz = 0$. Now Morera's theorem implies that f is analytic in the interior of Δ), and so it is a unital commutative Banach algebra. We call this the disc algebra.

(IX) Let (Ω, μ) be a measure space and $L^p(\Omega, \mu)$ for $1 \leq p < \infty$ be the set of all complex valued measurable functions f on Ω (we assume f is equal to g if f = g a.e. $[\mu]$) for which $||f||_p = (\int_{\Omega} |f|^p d\mu)^{\frac{1}{2}} < \infty$. $L^p(\Omega, \mu)$ with the norm $||.||_p$ is a Banach space and is a Hilbert space iff p = 2. $L^p(\Omega, \mu)$ denoted by $l^p(\Omega)$ if μ is counting measure. In particular, $l^p(\mathcal{N})$ denoted by l^p . Let $H = l^2$, (α_n) be a bounded sequence of complex numbers, and (ξ_n)

be the (usual) standard orthonormal basis of H, that is, $(\xi_n)(m) = \delta_{nm}$, $n, m \in \mathcal{N}$ (δ denoted the kronecker delta), so that $\zeta = \sum_{n=1}^{\infty} \langle \zeta, \xi_n \rangle \xi_n$ for any $\zeta \in H$. Then the operator $T \in B(H)$ defined by $T\xi_n = \alpha_n \xi_{n+1}$ is called a weighted shift with the weights (α_n) . If $\alpha_n = 1$ for all n, then T is called unilateral shift operator. It is straightforward to show that $||T|| = \sup_n |\alpha_n|$, $r(T) = \lim_k \sup_n |\prod_{i=0}^{k-1} \alpha_{n+i}|^{1/k}$ and $T^*\xi_1 = 0$ and $T^*\xi_n = \overline{\alpha_n}\xi_{n-1}$. If $1 \leq p < \infty$, then l^p can be regarded as a commutative Banach algebra with coordinatewise multiplication. (For p > 1, $||fg||_p \leq ||f||_p ||g||_p$ is a conclusion of Hölder inequality.) The l^p , $1 \leq p < \infty$, with the involution $f \longmapsto \overline{f}$ is an involutive Banach algebra.

- (X) The Banach space $L^1([0,1])$ with the product $(fg)(x) = \int_0^x f(x-y)g(y)dy$ is a non-unital commutative Banach algebra. It is called Volterra algebra.
- (XI) Let G be a locally compact group and μ a left invariant Haar measure on G, i.e. a Borel measure satisfying the following conditions.
- (a) $\mu(xE) = \mu(E)$, for every $x \in E$ and every measurable $E \subseteq G$.
- (b) $\mu(U) > 0$, for every non-void open set $U \subseteq G$.
- (c) $\mu(K) < \infty$, for every compact set $K \subseteq G$.

With the notation IX, and under the product given by the convolution $(f * g)(s) = \int_G f(t)g(t^{-1}s)d\mu(t)$ $(s \in G), L^1(G)$ is a commutative Banach algebra which called the group algebra of G. In particular, we can cansider $L^1(\mathcal{R})$, where the Lebesgue measure is an invariant Haar measure on \mathcal{R} . Also if G be an (algebraic) group, then G with the discrete topology is a locally compact

group. A left invariant Haar measure on G is the counting measure on G. The corresponding group algebra, denoted by $l^1(G)$ and is called discrete group algebra.

(XII) Let S be a semi-group and α a positive real-valued function on S such that $\alpha(st) \leq \alpha(s)\alpha(t)$ $(s,t \in S)$. If $l^1(S,\alpha)$ is the set of all complex-valued functions f on S for which $\sum_{s \in S} |f(s)| |\alpha(s)| < \infty$, then $l^1(S,\alpha)$ with the usual pointwise addition and scalar multiplication and the product (convolution) $(f*g)(s) = \sum_{tu=s} f(t)g(u)$ (if tu=s has no solutions, we assume (f*g)(s)=0), and with the norm $||f||=\sum_{s \in S} |f(s)|\alpha(s)$ is a Banach algebra. If $\alpha(s)=1$, $l^1(S,\alpha)=l^1(S)$ is called discrete semi-group algebra, Moreover if S=G is a group then $l^1(S)$ is the same discrete group algebra $l^1(G)$.

(XIII) Let (Ω, μ) be a measure space. Then the set $L^{\infty}(\Omega, \mu)$ consisting of all complex valued measurable functions f on Ω (with identifying functions which are almost everywhere equal) for which $||f||_{\infty} = \inf\{\lambda; \mu\{x \in \Omega; |f(x)| > \lambda\} = 0\} < \infty$ with the essential norm $||.||_{\infty}$ and pointwise operations is a unital commutative Banach algebra.

(XIV) If (Ω, μ) is a measure space, then $B_{\infty}(\Omega)$ that is the set of all bounded complex valued measurable functions on Ω is a closed subalgebra of $l^{\infty}(\Omega)$ and $L^{\infty}(\Omega, \mu)$ (again we identify almost everywhere equal functions).

(XV) The algebra $C^m([0,1])$ of the complex valued m times continuously differentiable on [0,1] with the norm $||f|| = \sum_{k=0}^m \frac{1}{K!} \sup_{x \in [0,1]} |f^{(k)}(x)|$ is a unital commutative Banach algebra. Its maximal ideals are precisely the $I_z = \{f; f(z) = 0\}$ where $z \in [0,1]$. Hence $C^m([0,1])$ is semi-simple.

(XVI) Suppose W is the set of all complex-valued functions f defined on the interval $[0,2\pi]$ of the form $f(t)=\sum_{k\in\mathcal{Z}}\alpha_k\exp(ikt)$ $(t\in[0,2\pi])$, where the $\alpha_k\in\mathcal{C}$ and $\sum_k|\alpha_k|<\infty$. The set W with the usual pointwise operations and with the norm $||f||=\sum_{k\in\mathcal{Z}}|\alpha_k|$ is a commutative Banach algebra and called the Wiener algebra. There is an isometric isomorphism between $l^1(\mathcal{Z})$ and W given by $f\longrightarrow \tilde{f}$ where $\tilde{f}(t)=\sum_{k\in\mathcal{Z}}f(k)\exp(ikt)$ $(t\in[0,2\pi])$.

(XVII) Let X and Y are normed spaces. Then the set of all bounded linear mappings (bounded operators) from X into Y with the operator norm $||T|| = \sup\{||Tx||; ||x|| \le 1\}$ and with the pointwise addition and scalar multiplication is a normed space. It is Banach iff Y is Banach. If Y = X, the space B(X, X) = B(X) with the product (ST)x = S(Tx) is a normed algebra (Banach algebra, if X is a Banach space).

(XVIII) In (XVII) if X = H is a Hilbert space, then B(H) with the involution $T \longmapsto T^*$ being defined by $\langle T^*x, y \rangle = \langle x, Ty \rangle$ $(x, y \in H)$ is

a C^* -algebra. Each C^* -algebra is isometrically isomorphic to a norm closed *-subalgebra of B(H) for a Hilbert space H.

(XIX) An operator from normed space X into normed space Y is called compact if T(U) is relatively compact in Y, where U is open unit ball of X; or equivalently for each bounded sequence (x_n) in X, (Tx_n) has a convergent subsequent in Y. The set of all compact operators from X into Y is denoted by K(X,Y) that is a subspace of B(X,Y).

If X is a Banach space, K(X) = K(X, X) is a closed two-sided ideal of B(X).

(XX) Identifying $M_n(\mathcal{C})$, the algebra of all $n \times n$ matrices with entries in \mathcal{C} , with $B(\mathcal{C}^n) = K(\mathcal{C}^n)$. So it is a unital non-commutative \mathcal{C}^* -algebra.

(XXI) Let H be a Hilbert space and $x \overline{\otimes} y$ is the (one-rank) operator given by $(x \overline{\otimes} y)z = \langle z, y \rangle x$. Suppose that $(e_i)_{i \in I}$, $(f_i)_{i \in I}$ are othonormal bases for H and $(\lambda_i)_{i \in I}$ is a family of complex numbers indexed by the same set I. The operator $T = \sum_{i \in I} \lambda_i e_i \overline{\otimes} f_i$ is well-defined and belongs to B(H) iff (λ_i) is bounded and then $||T|| = \sup\{|\lambda_i|; i \in I\}$.

(XXIa) An operator T is called of finite rank n if $n = dim T(H) < \infty$. The set F(H) of all finite rank operators is a self-adjoint two-sided ideal of B(H). It is consisting of all operators as $\sum_{i \in I} \lambda_i e_i \overline{\otimes} f_i \in B(H)$ such that $\lambda_i = 0$ for all i except finitely many i.

(XXIb) The two-sided ideal of the compact operators K(H) is self-adjoint and F(H) is norm-dense in K(H). K(H) is consisting of all operators as $T = \sum_{i \in I} \lambda_i e_i \overline{\otimes} f_i \in B(H)$ such that the λ_i are positive (the λ_i^2 are the eigenvalues of T^*T). This sum has either a finite or a denumerably infinite number of terms; in the last case, $\lambda_i \to 0$.

(XXIc) The set S(H) of all operators T for which $\sum_{i \in I} ||Te_i||^2 < \infty$ is a self-adjoint ideal of B(H). These operators are called Hilbert-Schmidt operators on H. The algebra S(H) with the Hilbert-Schmidt norm $||T||_2 = (\sum_{i \in I} ||Te_i||^2)^{1/2}$ is a Banach algebra. It contains operators of finite rank as a dense subset. For any pair of operators T and S in S(H), the family $(< Te_i, Se_i >)_{i \in I}$ is summable. Its sum (A, B) defines an inner product in S(H) and $(T, T)^{1/2} = ||T||_2$. So S(H) is a Hilbert space (independent on the choice basis (e_i)). $S(H) \subseteq K(H)$. S(H) consists of precisely those compact operators $T = \sum_i \lambda_i e_i \overline{\otimes} f_i$ for which $\sum_i \lambda_i^2 < \infty$. In addition $||T||_2 = (\sum_i \lambda_i^2)^{1/2}$.

(XXId) The set of all products of two Hilbert-Schmidt operators is denoted by N(H) and its elements are called trace-class operators. This set

is a self-adjoint two-sided ideal of B(H) and coincides with the set of those operators T for which $\sum_{i\in I}<|T|e_i,e_i><\infty$ where |T| is the absolute value of T in the C^* -algebra B(H). If $||T||_1=\sum_{i\in I}<|T|e_i,e_i>$, then N(H) with this norm is a Banach algebra. F(H) is a dense subset of N(H). N(H) is contained in K(H) and contains S(H). The elements of N(H) are precisely the compact operators $T=\sum_{i\in I}\lambda_ie_i\overline{\otimes}f_i$ for which $\sum_i\lambda_i<\infty$. Moreover, $||T||_1=\sum_i\lambda_i$.

(XXII) The set $\mathcal{C}[z]$ of all polynomials in an indeterminate z with complex coefficients under usual operations on polynomials and with the norm $||p|| = \sup_{|\lambda| < 1} |p(\lambda)|$ is a normed algebra.

(XXIII) The set of all formal polynomials of degree at most n with the usual addition, scalar multiplication and product (but together with the convention that $x^k = 0$ if k > n) and with the norm $||p|| = \sum_{k=1}^{n} |\alpha_k|$ ($p(x) = \sum_{k=1}^{n} \alpha_k x^k$) is a finite dimensional Banach algebra.

(XXIV) The algebra C([0,1]) with the supremum norm $\|.\|$ and multiplication $(f*g)(t)=\int_0^t f(s)g(t-s)ds$ is a Banach algebra.

Main References

[A&B] C.D. Aliprantis and O. Burkinshaw, Problems in real analysis, Acad. Press, 1990.

[Aup] B. Aupetit, A primer on spectral theory, Springer-Verlag, 1991.

[**B&D**] F.F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, 1973.

[Con] J.B. Conway, A course in functional analysis, New York, Springer-Verlag, 1990.

[G&O] B.R. Gelbaum and J.M.H. Olmsted, Theorems & counterexamples in mathematics, Springer-Verlag, 1990.

[Gui] A. Guichardet, Special topics in topological algebras, New York, Gordon & Breach, 1968.

[Hel] A.Ya. Helemskii, The Homology of Banach and topological algebras, Kluwer Acad. Pub., 1989.

[Hal] P.R. Halmos, A Hilbert space problem book, Princeton, Van Nostrand, 1967.

[K&R1] R.V. Kadilon and J.R. Ringrase, Fundamentals of the theory of operator algebras (I), Acad. Press, 1983.

[K&R2] R.V. Kadilon and J.R. Ringrase, Fundamentals of the theory of operator algebras (II), Acad. Press, 1986.

[K&R3] R.V. Kadilon and J.R. Ringrase, Fundamentals of the theory of operator algebras (III), Acad. Press, 1991.

[Ker] E. Kreyszig, Introductory functional analysis with applications, John Wiley & Sons, 1978.

[Mad] I.J. Maddox, Elements of functional analysis, Cambridge Unir.press, 1970.

[Mur] G.J. Murphy, C^* -algebras and operator theory, Academic Press, 1990.

[Ped] G.K. Pederson, Analysis now, Springer-Verlag, 1989.

[Ric] C.E. Rickart, General theory of Banach algebras, Princeton, Van Nastrand, 1960.

[Rud1] W. Rudin, Functional analysis, McGraw-Hill, 1989.

[Rud2] W. Rudin, Real and complex analysis, McGraw-Hill, 1986.

[Sak1] S. Sakai, C^* -algebras and W^* -algebras, Springer-Verlag, 1971.

[Sak2] S. Sakai, Operator algebras in dynamical systems, Cambridge Univ. Press, 1991.

[Zel] W. Zelazko, Banach algebras, Elsevier Publishing Company, 1973.

A construction of a bounded approximate identity for a commutative C^* -algebra A.

Let $A = C_0(X)$ be a commutative C^* -algebra. Consider the set Λ consisting of all compact subsets of X. (Λ, \subseteq) is a directed set. For each compact subset K of X, by Urysohn's lemma, there exists a function $f_K \in C_0(X)$ equal to 1 on K satisfying $0 \le f \le 1$. For each $g \in C_0(X)$ and given $\varepsilon > 0$, $K_0 = \{x \in X; |g(x)| \ge \varepsilon\}$ is compact. Hence for all $K \supseteq K_0$, $||f_K g - g||_{\infty} = \sup_{x \in X} |f_K(x)g(x) - g(x)| < \varepsilon$. Therefore $\lim_{K \in \Lambda} f_K g = g$, Thus $(f_K)_{K \in \Lambda}$ is a bounded approximate identity for A.

Two element x, y in a C^* -algebra A such that $sp(xy) \neq sp(yx)$.

Let $A=B(l^2)$, x be the unilateral shift operator on l^2 , defined by $T(\alpha_1,\alpha_2,\ldots)=(0,\alpha_1,\alpha_2,\ldots)$, and $y=T^*$. Then $TT^*(\alpha_1,\alpha_2,\ldots)=T(\alpha_2,\alpha_3,\ldots)=(0,\alpha_2,\alpha_3,\ldots)$ and $T^*T(\alpha_1,\alpha_2,\ldots)=T^*(0,\alpha_1,\alpha_2,\ldots)=(\alpha_1,\alpha_2,\ldots)$. Hence $sp(T^*T)=\{1\}$ but $0\in sp(TT^*)$ (since $(TT^*)(1,0,0,\ldots)=(0,0,\ldots)$).

An involutive Banach algebra A which isn't a C^* -algebra.

Consider $A=A(\Delta)^1$. Then $f^*(z)=\overline{f(\bar{z})}$ gives an involution on A such that $\|f\|=\sup_{z\in D}|f(z)|=\sup_{z\in D}|f(\bar{z})|=\|f^*\|$. Consider $f(z)=z^2$ and g(z)=z, then g is self-adjoint and $f=gg^*$. So f is positive and we must have $sp(f)\subseteq [0,\infty)$ contradicting $sp(f)=\Delta$. Hence A isn't a C^* -algebra.

¹Let Δ denote the closed unit disc $\{z \in \mathcal{C}, |z| \leq 1\}$. Suppose that $A(\Delta)$ denoted the set of all elements of $C(\Delta)$ which are analytic on the interior of Δ . $A(\Delta)$ is a closed subalgebra of $C(\Delta)$.

An involution # on Banach algebra $M_4(\mathcal{C})$, two normal matrix T and S such that TS = ST but $TS^\# \neq S^\#T$, S+T isn't normal and $||SS^\#|| \neq ||S||^2$.

Set

Then $Q^{\#} = U^{-1}Q^*U$ where Q^* denote the conjugate transpose of Q is an involution on $M_4(\mathcal{C})$. An straightforward computation shows that S and T has desired properties.

Ref.

[Rud1] W. Rudin, Functional analisis, McGraw-Hill, 1989.

A Banach algebra with a unique C^* -involution.

Every C^* -algebra has this property. Indeed if A is a untial Banach algebra which is C^* -algebra with respect to involutions * and #, then if $x=x^*$ and f be a state on A (i.e., by [K&R1, Theorem 4.3.2] is a bounded linear functional satisfying ||f|| = f(1) = 1) then, $f(x) = \overline{f(x^*)} = \overline{f(x)}$, so that $f(i(x-x^\#)) = i(f(x) - \overline{f(x)}) = 0$. Therefore, by [K&R1, Proposition 4.3.3] $sp(i(x-x^\#)) = \{0\}$. Hence $i(x-x^\#) = 0$, by [K&R1, Proposition 4.1.1.(i)]. So $x^\# = x = x^*$. For an arbitrary element x with the real and imaginary parts x_1 and x_2 , we have $x^* = x_1 - ix_2 = x^\#$. (If A doesn't have a unit, it is enough to consider its unitization).

Ref.

[K&R1] R.V. Kadilon, J.R. Ringrase, fundamentals of the theory of operator algebras (I), Acad. Press, 1983.

A C^* -algebra in which invertible elements are dense.

Consider $l^{\infty}(\Omega)$, the C^* -algebra of all bounded mappings from a set Ω into \mathcal{C} ,

 $f \in l^{\infty}(\Omega), \varepsilon > 0$. If

$$g(t) = \begin{cases} f(t) & |f(t)| \ge \varepsilon \\ \varepsilon & |f(t)| < \varepsilon \end{cases}$$

we have $g \in l^{\infty}(\Omega)$, $||g - f|| \le 2\varepsilon$. Since $\inf |g(t)| \ge \varepsilon > 0$, g is invertible.

Comment. C([a, b]) provides a separable example.

A liminal C^* -algebra which isn't postliminal.

Let A denote Toeplitz algebra. $K(H^2)$ is liminal. $\frac{A}{K(H^2)}$ is *-isomorphic to C(T), so it is abelian and therefore liminal. Hence A is postliminal .But identity representation of A on H^2 is irreducible and not finite dimensional, so A isn't liminal. For details see [Mur, Example 5.6.4].

Ref.

[Mur] G.J. Murphy, C*-algebras and operator theory, Academic Press, 1990.

A closed subalgebra of a C^* -algebra that isn't self-adjoint.

The disc algebra $\mathcal{A}(\Delta)^{-1}$ is a closed subalgebra of the C^* -algebra $C(\Delta)$. If f and \bar{f} both belong to $\mathcal{A}(\Delta)$, then by the Cauchy-Riemann equations f will be constant. So $\mathcal{A}(\Delta)$ isn't self-adjoint.

¹(VIII) Let Δ denote the closed unit disc $\{z \in \mathcal{C}, |z| \leq 1\}$. Suppose that $A(\Delta)$ denoted the set of all elements of $C(\Delta)$ which are analytic on the interior of Δ . $A(\Delta)$ is a closed subalgebra of $C(\Delta)$.

A closed left ideal of a C^* -algebra without any left approximate identity.

If ξ is a unit vector in a Hilbert space H with dimension at least 2, then $\Delta = \{T \in B(H); T\xi = 0\}$ is a closed left ideal in the C^* -algebra B(H). If Δ has a left approximate identity $\{S_{\alpha}\}$ and $\eta \neq 0$ is a vector in H such that $\langle \xi, \eta \rangle = 0$, then $\xi \otimes \eta \in \Delta$ and so $\lim_{\alpha} S_{\alpha}(\xi \otimes \eta) = \xi \otimes \eta$. Thus $\lim_{\alpha} ||(S_{\alpha}\xi - \xi) \otimes \eta|| = 0$ $\lim_{\alpha} ||S_{\alpha}\xi - \xi|| + \|\eta\| = 0$, hence $0 = \lim_{\alpha} ||S_{\alpha}\xi - \xi|| = \|\xi\|$, a contradiction. Thus Δ has no left approximate identity.

Note that for ζ_1 and ζ_2 in H the rank one operator $\zeta_1 \overline{\otimes} \zeta_2$ is defined by

$$(\zeta_1 \overline{\otimes} \zeta_2)(\zeta_3) = <\zeta_3, \zeta_2 > \zeta_1.$$

A nonclosed ideal that is not self-adjoint in a commutative C^* -algebra.

Consider C^* -algebra $A=C(\Delta)$ and the ideal $I=fA=\{fg\;;\;g\in A\}$, where f(z)=z. $f^*(z)=\bar{z}$ and if $f^*\in I$, then there exists an element $g\in A$ such that $f^*=fg$. So $g(0)=\lim_{z\to 0}g(z)=\lim_{z\to 0}\frac{\bar{z}}{z}$, a contradiction. Thus I isn't self-adjoint.

A closed ideal I of a commutative C^* -algebra A and a closed ideal J of I such that J isn't an ideal of A.

Let A=C([0,1]), I=Af and $J=\mathcal{C}f+Af^2$, where $f(t)=t; 0\leq t\leq 1$. Then J is an ideal of I and I is an ideal of A; but $f\in J$ and $f.f^{\frac{1}{2}}\not\in J$ (otherwise, there exist $\lambda\in\mathcal{C}$ and $g\in A$ such that $f.f^{\frac{1}{2}}=\lambda f+gf^2$. So $\lim_{t\to 0}t^{\frac{1}{2}}=\lambda+\lim_{t\to 0}tg(t)$. Therefore $\lambda=0$ and $t^{\frac{1}{2}}=tg$ contradicting the continuity of g. Thus J isn't an ideal of A.

A C^* -algebra A where every unitary element is of the form exp(ih) for a self-adjoint $h \in A$.

Suppose that A = C([0,1]). For each unitary $u \in A$, the mapping $t \longmapsto u_t$ from [0,1] to the unitary group of G of A with $u_t(x) = u((1-t)x)$ connects u to u(0)1. If $u(0) = exp(i\theta)$ for some real number θ , $\{exp(it\theta)1; 0 \le t \le 1\}$ in G connects 1 to u(0)1. Therefore u is connected to 1. Now by [K&R3, Exercise 4.6.7], u = exp(ih) for some $h \in A_h$.

Comment. By [K&R1, Theorem 5.2.1], A isn't W^* -algebra. Ref.

[K&R1] R.V. Kadilon, J.R. Ringrase, Fundamentals of the theory of operator algebras (I), Acad. Press, 1983.

[K&R3] R.V. Kadilon, J.R. Ringrase, Fundamentals of the theory of operator algebras (III), Acad. Press, 1991.

A C^* -algebra that isn't a von Neumann algebra.

K(H), where H is a separable infinite dimensional Hilbert space is a C^* algebra but not a von Neumann algebra. In fact if $(e_n)_{n\in\mathcal{N}}$ is a orthonormal
basis for H and $P_n = \sum_{i=1}^n e_i \overline{\otimes} e_i$, then P_n is a finite-rank projection converging
strongly to the identity operator I (since for each $x \in H$, $I(x) = x = \sum_{i=1}^{\infty} < x$, $e_i > e_i = \lim_n P_n(x)$). If K(H) were a von-Neumann algebra, it should be $I \in K(H)$, a contradiction.

A C^* -algebra A in which the closed unit ball of A^+ isn't the closed convex hull of the projections of A. (Note that the closed unit ball of positive elements of each hereditary C^* -algebra A of a von Neumann algebra is the closed convex hull of its projections).

The only projections of C([0,1]) are 0 and 1. So the closed convex hull of C([0,1]) is $\{f \mid \exists c \in [0,1]; f=c\}$, not equal to $(C([0,1]))_1^+$.

A primitive C^* -algebra with a unique nontrivial closed bi-ideal (and so that it is not simple).

Let H be a separable infinite dimensional Hilbert space and A = B(H). Then K(H) is a nontrivial closed bi-ideal of B(H), and if I is a nontrivial closed bi-ideal of B(H), we have $F(H) \subseteq I$ (cf. [Mur, Th. 2.4.7]). Hence $K(H) \subseteq I$. If $I \not\subseteq K(H)$, then I has an infinite-rank projection p (cf. [Mur, Cor. 4.1.14]). For each infinite-rank projection q, there exist $u \in B(H)$ such that $p = u^*u$ and $q = uu^*$ (if (e_n) and (f_n) are orthonormal basis for p(H) and q(H) resp., define $u(e_n) = f_n$ and u = 0 on $p(H)^{\perp}$) so $q = upu^* \in I$. Hence I = B(H), a contradiction.

Since $B(H)' = \mathcal{C}1$ (For $(\mathcal{C}1)' = B(H)$ and this is because of $(\mathcal{C}1)$ " = $\mathcal{C}1$), the identity representation $B(H) \longrightarrow B(H)$ is a faithful irreducible representation. Hence B(H) is primitive.

Ref.

[Mur] G.J. Murphy, C^* -algebras and operator theory, Academic Press, 1990.

A non-separable von Neumann algebra with a (unique) separable closed *-bi-ideal.

Let H be a separable infinite dimensional Hilbert space and (x_n) be a dense sequence in H. Then K(H) which is the closed linear span of rank-one projections, is the closure of the linear span of $x_n \overline{\otimes} x_n$ with rational coefficients,hence it is separable. If (e_n) is an orthonormal basis for H and for each subset S of the natural numbers \mathcal{N} ,

$$P_S(e_n) = \begin{cases} e_n & n \in S \\ 0 & \text{otherwise} \end{cases},$$

then $||P_S - P_{S'}|| = 1$, for $S \neq S'$. Thus $\{P_S\}_{S \in 2^N}$ cannot be in the closure of any countable sequence of B(H). Thus B(H) isn't separable.

Note that for x and y in H the rank one operator $x \overline{\otimes} y$ is defined by

$$(x \overline{\otimes} y)(z) = \langle z, y \rangle x.$$

A primitive C^* -algebra A acting on a Hilbert space H such that $A \cap A' = \{0\}$ (A' is the commutant of A in B(H)).

Let H be an infinite dimensional Hilbert space, then K(H) is primitive, since the identity representation

$$K(H) \longrightarrow B(H)$$

$$T \longmapsto T$$

is faithful irreducible (if $T \in K(H)'$, then for each x in H, $T(x \otimes x) = (x \otimes x)T$. So $Tx \otimes x = x \otimes T^*(x)$. Hence $\langle x, x \rangle Tx = \langle x, T^*x \rangle x$. So $Tx = \lambda(x)x$ for some $\lambda(x) \in \mathcal{C}$. For linearly independent vectors x and y, $\lambda(x+y)(x+y) = T(x+y) = Tx + Ty = \lambda(x)x + \lambda(y)y$. So $\lambda(x+y) = \lambda(x) = \lambda(y)$. Hence for each e in an orthonormal basis E of H, $\lambda(e) = \lambda(e_0)$, where e_0 is an arbitrary fixed element of E. Therefore $Tx = T(\sum_{e \in E} \mu_e e) = \sum_{e \in E} \mu_e \lambda(e_0)e = \lambda(e_0)x$. So $T = \lambda(e_0)I_H$. Thus $K(H)' \subseteq \mathcal{C}I_H$. Obviously $\mathcal{C}I_H \subseteq K(H)'$. So $K(H)' = \mathcal{C}I_H$). But $I_H \notin K(H)$. So $K(H) \cap (K(H))' = \{0\}$.

Note that for x and y in H the rank one operator $x \overline{\otimes} y$ is defined by

$$(x\overline{\otimes}y)(z) = \langle z, y \rangle x.$$

A non-primitive C^* -algebra.

C[0,1]. In fact if A is a commutative primitive C^* -algebra, then A has a nonzero faithful irreducible representation (H,φ) . So $(\varphi(A))'=\mathcal{C}1$. But $\varphi(A)$ is commutative, so $\varphi(A)\subseteq (\varphi(A))'=\mathcal{C}1$. But $\varphi(A)\neq \{0\}$ so $\varphi(A)=\mathcal{C}1$. Thus $A\simeq \varphi(A)=\mathcal{C}1$.

A simple C^* -algebra.

K(H) is a simple C^* -algebra. For if I is a nonzero closed bi-ideal of K(H), then it is a closed bi-ideal of B(H), so by [Mur, Th. 2.4.7] $F(H) \subseteq I$, hence $K(H) = \overline{F(H)} \subseteq \overline{I} = I$. Therefore I = K(H).

Ref.

[Mur] G.J. Murphy, C^* -algebras and operator theory, Academic Press, 1990.

A non-unital C^* -algebra with compact primitive ideal space.

If H is an infinite dimensional Hilbert space, then the non-unital C^* -algebra K(H) is simple. By (CW17), $(K(H))' = \mathcal{C}1$, so the identity representation

$$K(H) \longrightarrow B(H)$$

$$T \longmapsto T$$

is a faitful irreducible representation, hence $\{0\}$ is a primitive ideal of K(H). By (CW19), K(H) is simple, so primitive ideal space of K(H) is $\{\{0\}\}$, a compact space.

A non-liminal (CCR) C^* -algebra.

Let H be an infinite dimensional Hilbert space. Then faithful irreducible representation

$$B(H) \longrightarrow B(H) \qquad (B(H)' = C1)$$
 $T \longmapsto T$

together with $B(H) \neq K(H)$, shows that B(H) isn't liminal.

Comment. Another example may be found in CW22.

A C^* -algebra A and a closed bi-ideal J of A such that $\frac{A}{J}$ and J are liminal, but A is not liminal.

Let H be an infinite dimensional Hilbert space and I_H be the identity operator on H. Then $A = K(H) + \mathcal{C}I_H$ isn't liminal (otherwise, since identity representation $K(H) + \mathcal{C}I_H \longrightarrow B(H)$ is nonzero irreducible $((K(H) + \mathcal{C}I_H)' = K(H)' = \mathcal{C}I_H$ (see CW17)) we should have $I_H \in K(H)$, a contradiction). But K(H) is liminal, since each nonzero irreducible representation of K(H) is unitarily equivalent to identity representation $K(H) \longrightarrow B(H)$ (see [Mur, page 146]). Also $\frac{A}{J} \simeq \mathcal{C}I_H$ which is finite dimensional and so is liminal (Every finite dimensional C^* -algebra B is liminal, since if (H_1, Ψ) is a nonzero irreducible representation of B, then for $x \neq 0$ in H_1 , $\Psi(B)x$ is finite dimensional (for $\Psi(B)$ is finite dimensional). If $(u_\lambda)_\lambda$ be any approximate unit for B, then $(\Psi(u_\lambda))_\lambda$ strongly converges to I_H so $x \in [\Psi(B)x] = \Psi(B)x$. Hence $\Psi(B)x$ is a nonzero (closed) subspace of H_1 invariant for $\Psi(B)$, so by irreducibility, $\Psi(B)x = H_1$. Therefore H_1 is finite dimensional. Thus $\Psi(B) \subseteq B(H_1) = K(H_1)$).

Ref.

[Mur] G.J. Murphy, C^* -algebras and operator theory, Academic Press, 1990.

An operator of index zero which isn't invertible.

Let P be a non-trivial finite-rank idempotent in B(X) (X is a Banach space), then I - P, the difference of an invertible operator and a compact operator, is Fredholm, of index ind(I) = 0, and non-invertible.

A compact operator with no eigenvalues.

Let $X = C([0,1]), v : X \longrightarrow X$ be the Volterra operator $v(f)(x) = \int_0^x f(t)dt$. If S is the closed unit ball of X, then v(S) is equicontinuous and pointwise-bounded, hence by the Arzela-Ascoli theorem, v is compact. If for some $\lambda \in \mathcal{C}$ and $f \neq 0$ in X, $vf = \lambda f$, then $f(x) = \lambda f'(x)$. So $\lambda \neq 0$ and $\ln f(x) = \frac{x}{\lambda} + c$ for some $c \in \mathcal{R}$. Hence $f(x) = f(0)e^{\frac{x}{\lambda}} = 0e^{\frac{x}{\lambda}} = 0$, a contradiction. v has then no eigenvalue.

A week-operator closed subalgebra B of bounded operators on a Hilbert space H such that $B \neq B$, where B denotes the doubel commutant of B.

Let H be a Hilbert space of dimension greater than $1, \xi$ be a unit vector in H and B be the subalgebra of B(H) consisting of those operators for which ξ is an eigenvector. Let P be the projection with range $[\xi]$ (If $K \subseteq H$, we denote the closed linear span of K by [K]). Then $T \in B$ iff PTP = TP. B(H) with weak-operator topology is Hausdorff and the mappings $T \longrightarrow PTP$ and $T \longrightarrow TP$ are weak-operator continuous, hence T is weak-operator closed in T.

Choose a unit vector $\eta \in H$ orthogonal to ξ . Suppose that Q is the projection onto $[\{\xi,\eta\}]$ and S is the operator defined by $S\eta = \xi, S\xi = 0$ and S(I-Q) = 0. Then P,Q and S are in B. Thus if $T' \in B'$ (the commutant of B), then ξ and η are eigenvectors for T', say $T'\xi = \alpha\xi$ and $T'\eta = \beta\eta$. Since $T'S = ST', \beta\xi = \beta S\eta = ST'\eta = T'\xi = \alpha\xi$ and $\alpha = \beta$. But η is an arbitrary element orthogonal to ξ ; therefore $T' = \alpha I$. Thus $B' = \{\alpha I; \alpha \in \mathcal{C}\}$. (Here I denotes the identity operator on H.)

A unitary operator U acting on a Hilbert space whose spectrum is $C = \{z \in \mathcal{C}; |z| = 1\}.$

If H is a separable infinite dimensional Hilbert space with an orthogonal basis $(\xi_n)_{n\in\mathcal{Z}}$, we define $U\xi_n=\xi_{n+1}$. Then U is isometric and surjective, so it is a unitary operator. By Lemma 3.2.13 of [K&R1], $sp(U)\subseteq C$. If $\lambda\in C$ and $x_n=(2n+1)^{\frac{-1}{2}}\sum_{k=-n}^n\lambda^{-k}\xi_k$, then $\|\xi_n\|=1$ and $\|(U-\lambda I)x_n\|=(2n+1)^{\frac{-1}{2}}\|\sum_{k=-n}^n\lambda^{-k}\xi_{k+1}-\sum_{k=-n}^n\lambda^{-(k-1)}\xi_k\|=(2n+1)^{\frac{-1}{2}}\|\lambda^{-n}\xi_{n+1}-\lambda^{n+1}\xi_{-n}\|=2^{\frac{1}{2}}(2n+1)^{\frac{-1}{2}}\to 0$.

Therefore by the same lemma, $\lambda \in sp(U)$. Thus sp(U) = C.

Ref.

[K&R1] R.V. Kadison and J.R. Ringrose, Fundamental of the theory of Operator Algebras (I), Acad. Press, 1983.

An unbounded symmetric operator on an inner product space.

Suppose that H is the subspace of l^2 consisting of all sequences (ζ_n) with $\zeta_n=0$ for all sufficiently larg n. H is not complete (Since (a_n) where $a_n=(1,\frac{1}{2},\cdots,\frac{1}{n},0,0,\cdots)_{n\in\mathcal{N}}$ is a Cauchy divergent sequence in H). Let T denote the linear mapping $(\zeta_n)\mapsto (n\zeta_n)$ on H. T is symmetric, for $< T((\zeta_n)), (\eta_n)>=\sum_{n=1}^{\infty}n\zeta_n\overline{\eta_n}=<(\zeta_n), T((\eta_n))>$. T is unbounded since if (ξ_n) is the orthonormal basis for l^2 , for each $n,\xi_n\in H, \parallel \xi_n\parallel=1$ and $\parallel T\xi_n\parallel=n$.

Two selfadjoint operators T and S on a Hilbert space such that sp(ST) is not a subset of \mathcal{R} .

Consider

$$S = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), T = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

belonging to $B(\mathcal{C}^2)$. Then S and T are Hermetian, but $sp(ST) = \{i, -i\}$ which is not a subset of \mathcal{R} .

Two Hermetian operators T and S on a Hilbert space such that $S \ge 0$ and $-S \le T \le S$ but not $|T| \le S$.

Let

$$S = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & \sqrt{2} \\ 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \sqrt{2} & \sqrt{2} \end{pmatrix} \ge 0, T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

(S and T belong to $B(\mathcal{C}^2)$.)

Then

$$S - T = \begin{pmatrix} \sqrt{2} & 0 \\ \sqrt{2} & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2} & \sqrt{2} \\ 0 & 1 \end{pmatrix} \ge 0, S + T = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} \ge 0$$

and so
$$-S \leq T \leq S$$
, but $S - |T| = \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}$ and $\langle (S - |T|)\xi, \xi \rangle = -1$

where
$$\xi = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
, hence S dosen't majorize $|T|$.

A selfadjoint operator $T \neq 0$ on a Hilbert space such that T is neither positive nor negative.

Consider
$$T = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 belonging to $B(\mathcal{C}^2), \xi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\eta = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
Then $\langle T\xi, \xi \rangle = -1$ and $\langle T\eta, \eta \rangle = 1$. Hence the selfadjoint operator T is

neither positive nor negative.

A bounded operator on a Hilbert space which has no square root.

Suppose that T is the operator $T(x_1, x_2, \cdots) = (x_2, x_3, \cdots)$ on l^2 (in fact T is the adjoint of the unilateral shift operator). If T has a square root S, then $S^2 = T$ and $KerS \subseteq KerT = \mathcal{C}\xi_1$ in which $\xi_1 = (1, 0, 0, \cdots)$. Since T is not one to one we conclude that S is not one to one. So that $KerS = \mathcal{C}\xi_1$. T is surjective, hence S is onto. So there exists an element η such that $S\eta = \xi_1$. Since $T\eta = S^2\eta = S\xi_1 = 0$, we have $\eta = \lambda \xi_1$ for some $\lambda \in \mathcal{C}$ and hence $\xi_1 = S\eta = \lambda S\xi_1 = 0$, a contradiction.

Comment. There is an open subset of L(H) consisting of invertible operators with no square roots.

Ref.

J.B. Conway and B.B. Morrel, Roots and logarithms of bounded operators on Hilbert spaces, J. Funct Anal, 70(1987), 171-193.

A bounded increasing sequence of self-adjoint operators on a Hilbert space which is not uniformly convergent.

Assuming $(\xi_n)_{n\in\mathcal{N}}$ as an orthonormal basis for a separable infinite dimensional Hilbert space H, say l^2 . Denote the linear span of $\{\xi_1, \xi_2, \dots, \xi_n\}$ by Y_n . Let P_n be the projection onto the closed subspace Y_n . If m < n, then $Y_m \subset Y_n$ and so $0 < P_m < P_n$. Moreover $P_n - P_m$ is a projection and so $\|P_n - P_m\| = 1$ whenever $n \neq m$. Therefore (P_n) is an increasing sequence of self-adjoint operators which is not even a Cauchy sequence in uniform topology on B(H).

Given a compact subset K of C, there exists a bounded operator T on a Hilbert space such that sp(T) = K and the set of eigenvalues of T is dense in K.

Suppose that $H=l^2$, (e_n) is the standard orthonormal basis for H and (λ_n) is a dense sequence in K. Set $T(\sum_{n=1}^{\infty}\alpha_ne_n)=\sum_{n=1}^{\infty}\lambda_n\alpha_ne_n$ where $(\alpha_n)\in l^2$. Obviously $K\subseteq sp(T)$. If $\lambda\notin K$, then $\inf\{|\lambda-\mu|;\mu\in K\}>0$ and so $S(\sum_{n=1}^{\infty}\alpha_ne_n)=\sum_{n=1}^{\infty}(\lambda-\lambda_n)^{-1}\alpha_ne_n$ is a well-defined operator on H. S is the inverse of $\lambda I-T$. Therefore $\lambda\notin sp(T)$. Thus K=sp(T).

For every n, $Te_n = \lambda_n e_n$. In fact $\{\lambda_1, \lambda_2, \cdots\}$ is the set of all eigenvalues of T that is dense in sp(T).

Operators of arbitrary large norms that are bounded by 1 on a given basis of a separable infinite dimensional Hilbert space H.

Let (ξ_n) be an orthonormal basis for H. For $k \in \mathcal{N}$, define T_k on H by $T_k \eta = \langle \eta, \xi_1 + \xi_2 + \dots + \xi_k \rangle \xi_1$. Then

$$T_k \xi_n = \begin{cases} \xi_1 & n \le k \\ 0 & n > k \end{cases}$$

Hence $||T_k\xi_n|| \le 1(n \in \mathcal{N})$. On the other hand $T_k^*\eta = <\eta, \xi_1>(\xi_1+\cdots+\xi_k)$ $(\eta \in H)$; therefore $||T_k|| = ||T_k^*|| \ge ||T_k^*\xi_1|| = ||\xi_1+\cdots+\xi_k|| = \sqrt{k}$.

Given a compact subset K of \mathcal{C} such that $\overline{K^0}=K$, there exists an operator T acting on a Hilbert space H such that sp(T)=K and T has no eigenvalue.

Let $H = L^2(K)$ in which K is equipped with the Lebesgue measure m on \mathbb{R}^2 . Define T on H as the following:

$$(Tf)(\mu) = \mu f(\mu); \ \mu \in K, f \in H.$$

If $\lambda \notin K$, then $\sup\{|\lambda - \mu|^{-1}; \mu \in K\} < \infty$ and so we can define an operator S on H by $(Sf)(\mu) = (\lambda - \mu)^{-1}f(\mu); f \in H, \mu \in K$. Hence $S(T - \lambda I) = (T - \lambda I)S = I$ so that $\lambda \notin sp(T)$. If $\lambda \in K$, $(\lambda I - T)^{-1} \in B(H)$ and f denotes the characteristic function of $\{\mu; |\lambda - \mu| < \epsilon\}$ multiplied by $m(\{\mu; |\lambda - \mu| < \epsilon\})^{-1/2}$, then

$$1 = || f ||_{2} \le || (\lambda I - T)^{-1} || || (\lambda I - T) f ||_{2}$$
$$= || (\lambda I - T)^{-1} || \int_{K} (\lambda - \mu) f(\mu) dm(\mu) \le || (\lambda I - T)^{-1} || \epsilon,$$

a contradiction. Hence $(\lambda I - T)$ is not invertible. So $\lambda \in sp(T)$. It follows that sp(T) = K. In addition, if $Tf = \alpha f$ for some $\alpha \in \mathcal{C}$, then for all $\mu \in K$, $\mu f(\mu) = \alpha f(\mu)$. So f = 0 almost every where. Thus T has no eigenvalue.

An operator T on a Hilbert space such that the set eig(T) of all eigenvalues of T is empty but $sp(T) \neq \emptyset$.

The unilateral shift operator on the Hilbert space l^2 (with its standard orthonormal basis (e_n)) given by $Te_n = e_{n+1}, n \in \mathcal{N}$, has no eigenvalue; since obviously $0 \notin eig(T)$ and if $0 \neq \lambda \in eig(T)$ and $Tx = \lambda x$ for some $x = \sum_{n=1}^{\infty} \alpha_n e_n \neq 0$, then $\sum_{n=1}^{\infty} \alpha_n e_{n+1} = \sum_{n=1}^{\infty} \lambda \alpha_n e_n$ and hence $\alpha_n = 0$ for all n, i.e. x = 0, a contradiction.

Next observe that $0 \in sp(T)$; otherwise T would be invertible so $T(T^{-1}(e_1)) = e_1$, but $< T(T^{-1}e_1), e_1 > = 0$ by the definition of T, that is impossible.

A Hilbert space H such that on B(H)

- (i) the involution isn't continuous with respect to the strong operator topology;
- (ii) the weak operator topology and the strong operator topology are different;
- (iii) the operator norm is not continuous with respect to the strong operator topology and the weak operator topology;
- (iv) the weak operator topology and the strong operator topology aren't metrizable;
- (v) the operation multiplication is continuous in neither weak nor strong operator topology.

Let $H=l^2$ and (e_n) be the standard orthonormal basis for H (note that for all $x \in H$, $x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$). Set $T_n = e_1 \overline{\otimes} e_n$. Then $T_n^* = e_n \overline{\otimes} e_1$ (i) $\lim_n \|T_n x\| = \lim_n \|\langle x, e_n \rangle e_1\| = \lim_n |\langle x, e_n \rangle| = 0$. So $T_n \longrightarrow 0$ in the strong operator topology. But $\lim_n \|T_n^* e_1\| = \lim_n \|e_n\| = 1$, hence T_n^* dosen't converge to zero in the strong operator topology. So $T \longrightarrow T^*$ is not continuous in the strong operator topology.

- (ii) The involution is continuous with respect to the weak operator topology (since $|\langle Tx,y\rangle| = |\langle T^*y,x\rangle|$). Hence (i) implies that the weak operator topology and the strong operator topology don't coincide on B(H).
- (iii) $||T_n|| = ||e_1|| ||e_n|| = 1$, and by (i) $T_n \longrightarrow 0$ in the strong operator topology. Therefore the operator norm is not continuous on B(H).
- (iv) Let $\Delta = \{n^{\frac{1}{2}}T_n; n \in \mathcal{N}\}$. For each neighborhood $U(0, x_1, \dots, x_m, \epsilon)$ of 0

in the strong operator topology, with $x_k = \sum_{n=1}^{\infty} \alpha_k^n e_n$, $|| n^{\frac{1}{2}} T_n x_k || = n^{\frac{1}{2}} |\alpha_k^n|$.

But for every $1 \leq k \leq m$, $\sum_{n=1}^{\infty} |\alpha_k^n|^2 < \infty$, hence for each ϵ there exists a natural number n such that $n^{\frac{1}{2}} |\alpha_k^n| < \epsilon$. So that 0 belongs to the strong closure of Δ . It follows from the principle of uniform boundedness and $||\sqrt{n}T_n|| = \sqrt{n}$ that any sequence in Δ doesn't converge to 0 in the strong operator topology. Hence the strong operator is not metrizable. Similarly one can show that the weak operator topology is not metrizable.

(v) Let Λ be the set of all (n, U) in which $n \in \mathcal{N}$ and U is a neighborhood of 0 in the strong operator topology on B(H). Then Λ with the following relation is a directed set:

$$(m, U) \leq (m', U') \Leftrightarrow (m \leq m' \text{ and } U \supseteq U')$$

Suppose that S is the unilateral shift operator on (e_n) , i.e. $S(\sum_{k=1}^{\infty} \alpha_k e_k) =$

$$\sum_{k=1}^{\infty} \alpha_k e_{k+1}.$$

Obviously $S^*(\sum_{k=1}^{\infty} \alpha_k e_k) = \sum_{k=1}^{\infty} \alpha_{k+1} e_k$. If $\lambda = (m_{\lambda}, U_{\lambda}) \in \Lambda, \lim_n \| S^{n^*} x \| =$

 $m_{\lambda} \lim_{n} (\sum_{k=1}^{\infty} |\alpha_{k+n}|^2)^{\frac{1}{2}} \longrightarrow 0$ whenever $x = \sum_{k=1}^{\infty} \alpha_k e_k \in H$. Therefore $(m_{\lambda} S^{n^*})_{n \in \mathcal{N}}$ converges to 0 in the strong operator topology. So that there exists a positive integer number n_{λ} such that $m_{\lambda} S^{n_{\lambda}^*} \in U_{\lambda}$. Set $T_{\lambda} = m_{\lambda} S^{n_{\lambda}^*}$ and $R_{\lambda} = \frac{1}{m_{\lambda}} S^{n_{\lambda}}$. Then $\lim_{\lambda} ||R_{\lambda}|| = \lim_{\lambda} \frac{1}{m_{\lambda}} = 0$, so that R_{λ} converges to 0 in the norm topology.

If U be a strong neighborhood of 0 and $\lambda_0 = (1, U)$, then $T_{\lambda_0} \in U_{\lambda_0}$ and for every $\lambda \geq \lambda_0, T_{\lambda} \in U_{\lambda} \subseteq U_{\lambda_0}$. therefore $(T_{\lambda})_{\lambda \in \Lambda}$ converges to 0 in the strong operator topology. But $T_{\lambda}R_{\lambda} = 1$ for all λ , hence if the multiplication is

jointly continuous in either the weak or the strong operator topology, then $1 = \lim_{\lambda} T_{\lambda} R_{\lambda} = \lim_{\lambda} T_{\lambda} \lim_{\lambda} R_{\lambda} = 0, \text{ a contradiction.}$

Comment. The statements are true on any infinite dimensional Hilbert space.

Ref.

[Mur] G.J. Murphy, C^* -algebras and operator theory, Academic Press, 1990.

A sequence of nilpotent operators on H which converges with respect to the norm topology on B(H) to an operator which is not topologically nilpotent.

This example is due to Kakutani (cf. [Ric, p. 282]). Let H be a separable Hilbert space with orthonormal basis $(f_m)_{m \in \mathcal{N}}$. Define $\alpha_m = e^{-k}$ for $m = 2^k(2l+1)$, $k, l = 0, 1, \cdots$ and also the operator T by $Tf_m = \alpha_m f_{m+1}, m \in \mathcal{N}$. Then $||T|| = \sup_{m \in \mathcal{N}} |\alpha_m|, T^n f_m = \alpha_m \alpha_{m+1} \cdots \alpha_{m+n-1} f_{m+n}$ and so $||T^n|| = \sup_{m \in \mathcal{N}} (\alpha_m \alpha_{m+1} \cdots \alpha_{m+n-1})$.

Moreover, by the definition of the α_m , we have $\alpha_1 \alpha_2 \cdots \alpha_{2^{t-1}} = \prod_{j=1}^{t-1} exp(-j2^{t-j-1})$.

Therefore
$$(\alpha_1\alpha_2\cdots\alpha_{2^t-1})^{\frac{1}{2^{t-1}}} > (\prod_{j=1}^{t-1}exp[\frac{-j}{2^{j+1}}])^2$$
 and if $\sigma = \sum_{j=1}^{\infty}\frac{j}{2^{j+1}}$, then $e^{-2\sigma} \leq \lim_n \|T^n\|^{\frac{1}{n}}$. So T is not topologically nilpotent.

Next define the operator T_k by

$$T_k f_m = \begin{cases} 0 & m = 2^k (2l+1), l = 0, 1, \cdots \\ \alpha_m f_{m+1} & \text{otherwise} \end{cases}$$

Then T_k is nilpotent. But

$$(T - T_k)f_m = \begin{cases} e^{-k} f_{m+1} & m = 2^k (2l+1), l = 0, 1, \dots \\ 0 & \text{otherwise} \end{cases}$$

Thus $||T_k - T|| = e^{-k}$, hence $\lim_k T_k = T$ in the norm topology on B(H).

Ref.

[Ric] C.E. Rickart, General theory of Banach algebras, Princeton, Van Nastrand, 1960.

- (a) A Banach space X and an operator $T \in B(X)$ having no non-trivial invariant subspace.
- (b) A Banach space X and an operator $T \in B(X)$ having a nontrivial invariant subspace.

- (a) C.J. Read showed that if $X = l^1$ then there exists a bounded operator on l^1 having no nontrivial invariant subspace.
- (cf. [C.J. Read, A solution to the invariant subspace problem, Bull. London Math. Soc., 16(1984), 337-401.]
- (b) If $X = \mathcal{C}^n(n > 1)$, $T \in B(\mathcal{C}^n) \mathcal{C}I$ is an arbitrary operator and $\alpha \in \mathcal{C}$ is an eigenvalue of T, then $M = Ker(T \alpha I)$ is a nontrivial subspace of X and $TM \subseteq M$. (I is the identity operator on \mathcal{C}^n)

- (a) An injective operator on a Hilbert space H such that the range of T, R(T), isn't dense in H.
- (b) An operator S such that S is surjective but $Ker(S) \neq \{0\}$.

Let H be a separable Hilbert space with the standard orthonormal basis (e_n) .

- (a) The unilateral shift operator $T(\alpha_1, \alpha_2, \cdots) = (0, \alpha_1, \alpha_2, \cdots)$ on H is injective and the closure of its range is the closed linear span $\{e_2, e_3, \cdots\}$ which doesn't contain e_1 .
- (b) If $S = T^*$, then $S(\alpha_1, \alpha_2, \dots) = (\alpha_2, \alpha_3, \dots)$. So S is surjective but $Ker(S) \neq \{0\}$, since it is the linear span of e_1 .

Two positive operators $T \leq S$ acting on a Hilbert sace such that S^2 does not majorize T^2 .

Define T and S as operators on C^2 by $T(z_1, z_2) = (z_1, 0)$ and $S(z_1, z_2) = (2z_1 + z_2, z_1 + z_2)$.

Then

$$sp(T) = sp(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}) = \{0, 1\} \subseteq \mathcal{R}^{\geq 0}, T^* = T, sp(S) = sp(\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}) = \{\frac{3^{\pm}\sqrt{5}}{2}\} \subseteq \mathcal{R}^{\geq 0},$$

$$S^* = S, sp(S - T) = sp(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}) = \{0, 2\} \subseteq \mathcal{R}^{\geq 0}.$$

Hence $0 \le T \le S$. But $sp(S^2 - T^2) = sp(\begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix}) = \{3^{\pm}\sqrt{10}\}$ is not a subset of $\mathcal{R}^{\ge 0}$. Therefore S^2 doesn't majorize T^2 .

An unbounded operator on a Hilbert space H annihilating an orthonormal basis of H.

Let (e_n) be the standard orthonormal basis for the Hilbert space $H = l^2$. Extend (e_n) to a Hamel basis β for l^2 . Choose $f \in \beta$ distinct to the e_n and define then the linear mapping $T: H \longrightarrow H$ by

$$T(g) = \begin{cases} 1 & g = f \\ 0 & g \in \beta \setminus \{f\} \end{cases}$$

Then $T(e_n) = 0$ and T is unbounded (otherwise, $1 = T(f) = \sum_{n=1}^{\infty} \langle f, e_n \rangle$ $T(e_n) = 0$. An operator U on a Hilbert space, other than I, such that $sp(U) = \{1\}$ and $\parallel U \parallel = 1$.

Suppose that $H=L^2(0,1)$ with respect to the Lebesgue measure and $(Tf)(x)=\int_0^x f(t)dt$. It follows from BA15.DVI, sp(T)=0, so that $sp(I+T)=\{1\}$. Hence $U=(I+T)^{-1}\neq I$ is well-defined, moreover $sp(U)=\{\lambda^{-1};\lambda\in sp(I+T)\}=\{1\}$. Therefore

$$1 = r(U) \le \parallel U \parallel.$$

But $||U|| \le 1$, since

$$\parallel U^{-1}\xi\parallel^2=\parallel (I+T)\xi\parallel^2=\parallel f\parallel^2+<(T+T^*)\xi,\xi>+\parallel T\xi\parallel^2\geq\parallel f\parallel^2.$$

(Note that $T+T^*$ is a projection onto the space of constant functions, since $(T^*f)(t)=\int_t^1 f(t)dt$.)

Thus $\parallel U \parallel = 1$.

A unital commutative Banach algebra with a maximal ideal M of codimension 1 and a Banach A-module X such that $H^2(A,X)=0$ but $H^2(M,X)\neq 0$.

Let $A = \mathcal{C}^2$ with the product (a,b)(a',b') = (aa',ab'+a'b). $M = \{0\} \oplus \mathcal{C}$, being the kernel of the character $\phi: A \longrightarrow \mathcal{C}$ defined by $\phi(z,w) = z$, is a maximal ideal of codimension 1. Regard $X = \mathcal{C}$ as an annihilator A-module. By [B&D&L, Proposition 2.2],

 $H^2(A,X) = \{0\}$. If $\mu((0,w_1),(0,w_2)) = w_1w_2$, then $\mu \in Z^2(M,X)$, but $\mu \notin N^2(M,X)$ (otherwise $w_1w_2 = \mu((0,w_1),(0,w_2)) = (\delta^1\lambda)((0,w_1),(0,w_2)) = (0,w_1).\lambda((0,w_2)) - \lambda((0,w_1).(0,w_2)) + \lambda(0,w_1).(0,w_2) = 0 - \lambda(0) + 0 = 0$, for all $w_1, w_2 \in \mathcal{C}$, a contradiction). Thus $H^2(M,X) \neq 0$.

Ref.

[B&D&L] W.G. Bode, H.G. Dales and Z. Lykova, Algebraic and strany splittings of extensions of Banach algebras, mem. Amer. Math. Soc. 137 (1999).

A non-split short complex of Banach spaces whose dual splits.

 $0 \longrightarrow c_0 \xrightarrow{i} l^{\infty} \xrightarrow{\pi} \frac{l^{\infty}}{c_0} \longrightarrow 0$ is a short exact complex of Banach spaces which doesn't split since c_0 is not complemented in l^{∞} .

Its dual complex $0 \longrightarrow (\frac{l^{\infty}}{c_0})^{\#} \xrightarrow{\pi^{\#}} (l^{\infty})^{\#} = (l^1)^{\#\#} \xrightarrow{i^{\#}} c_0^{\#} = l^1 \longrightarrow 0$ splits. Notice that the later complex is exact and the canonical embedding $l^1 \longrightarrow (l^1)^{\#\#}$ is a right inverse to $i^{\#}$.

A weakly amenable commutative Banach algebra which is not amenable.

 $l^p, 1 \leq p < \infty$, is closed linear span of its idempotents $\zeta_n(k) = \delta_{nk}, n, k \in \mathcal{N}$. Suppose that e is an idempotent of l^p , X is a symmetric Banach l^p -module, and $D: A \longrightarrow X$ is a continuous derivation. Then $De = D(e^2) = 2eD(e)$ and so De = (De - 2eDe) - 2e(De - 2eDe) = 0. It follows that D = 0. So that l^p is weakly amenable. But $l^p, 1 \leq p < \infty$ has no bounded approximate identity (see ba41.dvi in the case p = 2), so that A is not amenable (cf. [B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972)]).

A derivation on an algebra which is not inner.

Suppose that A is an algebra with unit 1 and a is an element of A which is not algebraic (i.e. $\{1, a, a^2, \dots\}$ isn't a linearly independent set). Let B be the subalgebra of A generated by 1 and a. Define a mapping D of B into B by $D(\lambda_0 + \lambda_1 a + \dots + \lambda_n a^n) = \lambda_1 + 2\lambda_2 a + \dots + n\lambda_n a^{n-1}$. Obviously D is a derivation on B and isn't inner, since B is commutative and $D \neq 0$.

A closed unbounded *-derivation on a C^* -algebra A.

Suppose that A = C([0,1]) and $\delta(f) = (\frac{d}{dt})f(t) = f'(t)$ with the domain $D(\delta) = C^1([0,1])$ where $C^1([0,1])$ is the algebra of all continuously differentiable functions on [0,1]. $\parallel \delta(x^n) \parallel = n = n \parallel x^n \parallel$ implies that δ is an unbounded derivation from $D(\delta)$ into A. If $f_n \in D(\delta), f_n \longrightarrow f \in A$, and $\delta(f_n) \longrightarrow g$, then $f'_n \longrightarrow g$ uniformly on [0,1] and $f_n(0) \longrightarrow f(0)$. So g is differentiable and f' = g. Therefore $f \in D(\delta)$ and $\delta(f) = g$.

A Banach algebra for which every linear operator is a derivation.

Suppose that A is an arbitrary Banach space. Defining $x.y = 0(x, y \in E)$, E is a Banach algebra. Obviously every linear operator is a derivation.

A non-closable unbounded *-derivation.

Let X be the Cantor set of [0,1]. It is well-known that X is a perfect compact subset of [0,1]. By Tietze's theorem, $C(X) = \{f|_X; f \in C([0,1])\}$. Define δ on $D(\delta) = \{f|_X; f \in C^1([0,1])\}$ by $\delta(f|_X) = f'|_X$. δ is a well-defined derivation (if $f|_X = 0$, then for each $x_0 \in X$ there exists a sequence $\{x_n\}$ in $X - \{x_0\}$ converging to x_0 . So $f'(x_0) = \lim_n \frac{f(x_n) - f(x_0)}{x_n - x_0} = 0$, therefore $f'|_X = 0$).

But δ is not identically zero so by [Sak2, Proposition 3.2.1] δ cannot be extended to a closed derivation in C(X). So that δ isn't closable.

This example is due to O.Bratteli and D.W. Robinson ([cf. Sak2, P.59]).

Ref.

[Sak2] S. Sakai, Operator algebras in dynamical systems, Cambridge Univ. Press, 1991.