(a) A unital Banach algebra, except the algebra of complex num-
bers, without nontrivial idempotent.
(b) A unital Banach algebra with a nontrivial idempotent.

(Recall that 0 and 1 are called trivial idempotents.)

stk st st sk st ok ok sk ok sk st sk ok sk ok ok ok sk ok ok skok ok

We show that the Banach algebra C'(X) has no nontrivial idempotent iff
X is connected:
Let 0 # f # 1 be an idempotent. Then X = f~1({0}) U f~*({1}) implies

that X is not connected. Conversely if X is disconnected and X = G; U G,

: L L zeG | .
with open disjoint sets Gy and Gy, then f(x) = is a trivial

0 x¢€ G2
idempotent of C'(X).

Comment. If A is a (not necessarily commutative) Banach algebra with
an element a € A such that sp(a) is not connected, then A has a nontrivial

idempotent. (cf. [B&D, Remarks of Prop. 7.9 |)

Ref.
[B&D] F.F. Bonsall, J. Duncan, complet normed algebras, Springer-Verlag,1973.



A Banach algebra generated by idempotents i.e. elements = such

that 22 = x.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

In the following, we show that the Banach algebra C'(X), where X is a
compact Hausdorff space, with Card(X) > 1 ,is generated by idempotents
iff X is totally disconnected.

Recall that a topological space is said to be totally disconnected if for ev-
ery distinct x1,zo € X, there exist disjoint open sets G; and G5 such that
1 € G1,29 € Gy and X = G U Gs.

If X is totally disconnected, x; # 22,21 € G1, 25 € G, X = GL UGy, G1 N
1 zeGy

0 =€,y
separates x; and x3. So the closed self-adjoint subalgebra generated by idem-

G5 = (0, G1 and G are open, then the continuous function f(z) =

potent, by the Stone-Weierstrass theorem, is C(X).

Conversely, suppose that C'(X) is generated by its idempotents. Let x; and
x5 belong to X. By Urysohn’s lemma there exists a function f € C(X) such
that f(x1) =1 and f(z3) = 0. Every elemenz of the self-adjoint subalgebra

generated by idempotents is of the form i = > "\;g;(%) for some idempotents
g; and \; € C. Hence there is a sequence (;Lj of elements of the form (d)
such that h, — f uniformly on X. So h,(z;) — 1 and hy,(z2) — 0.
Therefore there exists a number N such that [hy(z1)| > 5 and |hy(z2)| <
So that ;1 € hy'({z € C;|z| > 1}) = Gi,72 € hy'({z € C;|2] < 1}) =

Gy, X =G UG, X =G NGy = 0. Thus X is totally disconnected.

N[



A compact Hausdorff space X and subalgebras of C'(X) satisfying
in only three conditions of four following conditions:

(a) uniformly closed,

(b) separating the points of X,

(c) containing constant functions,

(d) closed under complex conjugation.

(a), (b), (c); i.e. a uniform algebra:

Consider a compact subset X of C and suppose that A is the uniform closure
of rational functions with poles out of X.

(a), (b), (d):

With X = [a,b], let A be the set of all polynomials in one variable, but
without constant terms.

(b), (c), (d):

With X = [a, ], put A to be the algebra of all polynomials in one variable.
(a), (c), (d): Let X =[a,b],z; and x5 arein X and A = {f € C(X); f(z1) =
fx2)}-



A Banach algebra A such that Rad(A) is a proper subset of the set

{z;r(z) = 0} of all quasi-nilpotent elements.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

1.Suppose that H be a Hilbert space with dimH > 2. Let x,y € H—{0}
and < z,y >= 0. The norm of rank one operator (z®y)(z) =< z,y > x
is |z [|]]| y[|# 0. Sox®y # 0. Also (z®y)%(2) = (z®y)(< z,y > z) =<
2,y >< 1w,y > =0s0 (xr®y)? = 0. Hence it is quasi-nilpotent. But B(H)
is semi-simple. Therefore x®y ¢ Rad(B(H)) = {0}.

2.Let A = M,y(C) ~ B(C?) . Ais a C*-algebra so Rad(A) = {0}.
0 1

0 0
Rad(A) is not equal to {x;r(z) =0}.

0 1
The element ( ) has the spectrum {0} and so 7"(( )) = 0. Hence
0 0



An algebrically semisimple non-commutative Banach algebra.
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We show that B(X), the algebra of bounded linear mappings from normed
space X into X is semi-simple:
Suppose that zy # 0 is fixed in X. Then I,, = {T € B(X);Txy = 0} is a
left ideal in B(X).
We shall show that it is maximal. Let J be a left ideal properly containing
I,,. Then Jxg = {Txo;T € J} is a nonzero linear subspace of X which is
invariant under each S € B(X). If Jxy # X, then there exists a nonzero
y € Jxo and an element z € X such that z ¢ Jzg. If S € B(X) such
that Sy = z, then z € Juxy for Jx; is invariant under all elements of B(X).
Thus Jzxy = X. So that there exists U € J such that Uxy = xy. For each
T e B(X), TU —UT € I,,. Hence T € J + I, C J. Therefore B(X) = J.
Thus Rad(B(X)) C Nozyex Iy = {0}. Therefore B(X) is algebrically semisim-

ple.



A semisimple commutative Banach algebra with a closed two-sided

ideal I such that 4 isn’t semisimple.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Suppose that A is the algebra C™ ([0, 1]) of all m times continously differ-

m

1
entiable complex-valued functions on [0, 1] with the norm || f [|= Y_— sup |f¥ ().
]

k!
k—0v: z€[0,1
Let I = {f € 4; f(0) = f'(0) = 0}. Then 4 is not semisimple, since assum-

ing f, to be f.(r) = x, then f2 € I and so (f, +1)> = f2+ 1 = 0, hence
r(z) = lim, || (f + )" ||*= 0. Therefore f, + I € Rad(%). But f, + I # 0.

So that % is not semisimple.



A non-maximal primary ideal in a unital commutative Banach al-

gebra A.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Suppose that A is the algebra C"™ ([0, 1]) of the complex valued m times

m

continously differentiable functions on [0, 1] with the norm || f ||= ;;)% :vsel[l()l,)l] |F®) ().
Let zg € [0,1] and [ = {f € A; f(xy) = f'(x¢) = 0}. Then I is a closed two-

sided ideal contained in only one maximal ideal; i.e. {f € A : f(xo) = 0}.

Note that the maximal ideals of A are of the form I, = {f € A; f(z) =

0}, 2 €[0,1].

A conclusion is that C™(]0, 1]) is not spectral synthesis, i.e. it has a closed

two-sided ideal which is not the intersection of maximal ideals containing

this ideal.

Comment. The disk algebra contains a nonmaximal prime ideal, namely

{0}.



An (algebrically) simple Banach algebra.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

In the case commutative, consider the familiar Banach algebra C.
In the non-commutative case, consider the algebra M, (C) of all n x n matri-
ces with entries in C. Identifying M, (C) with B(C™) = K(C™) we may regard

M, (C) as a noncommutative C*-algebra.

Suppose that [;; is the matrix with the ¢j-entry 1 and 0 elswhere. Then
I;ijI.g = d;alig, where § denotes Kronecker’s §. Let A be a nontrivial two-
n

sided ideal in M,,(C). There is a nonzero element A = > a;;I;; in A, hence
ij—1

ars # 0 for some 1 < r,s < n. But I,;Al, = (Zarjlrj)fsr = a,,I,, € A.
j=1
Hence I;; = ;I 1; € A for all 1 < 4,5 < n. Therefore A = M,(C), a

contradiction.



A Banach algebra A, a closed subalgebra B of A and an element
a € A such that sp(A,a) = sp(B,a).

sk kot sk kot ok sk skt ks sk skt ks kR ok o
Let H be a Hilbert space, A = B(H),a =T be a nonzero element of A

and also let B be a maximal commutative subalgebra containing 7', then by

Theorem 15.4 of [B&D, §15. Theorem 4],

sp(A,a) = sp(B,a).

Ref.
[B&D] F.F. Bonsall, J. Duncan, Complete normed algebras, Springer-Verlag,
1973.



(a) A reflexive Banach algebra.

(b) A non-reflexive Banach algebra.
Sk K K K
(a)C™ is reflexive. Note that (C")## = (C")# =C" (n > 1).

(b) ¢f# = (1")# = [ and the inclusion ¢y — [* is proper. Hence ¢ is

not reflexive.



An element of a Banach algebra which has no logarithm.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Consider the unilateral shift operator v on a separable Hilbert space H, then

u is Fredholm of index nulu —defu =0—-1=—1. If 7: B(H) — % is the
quotient map and 7(u) = e¥ for some w in the Calkin algebra %, then there

exists an element w' € B(H) with 7(w') = w, so w(u) = ¥ = ") = 7(e?').
Hence u — e € K(H). But e is invertible and so indu = ind(e®') = 0, a

contradiction.



An algebra can not be normed so that it becomes a Banach algebra.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

A = C*([0,1]), the algebra of all complex valued infinitely many times
continuously differentiable functions on [0,1] is semisimple, for Rad(A) =
Neeppy{f € C=([0,1]); f(t) = 0} = 0. f + f"is a derivation on A. The
Johnson theorem says that 0 is the only derivation on a semisimple Banach
algebra ( cf. [B&D, Theorem 18.21]). It follows that A = C'*°([0, 1]) is not
a Banach algebra under any norm.

For a proof based on the Singer-Wermer theorem see [Sak2, Corollary 2.2.4]).
In addition a direct proof can be found in [Aup, Corollary 4.1.12].
This example is due to Silov([sil]).

Ref.

[Aup] B. Aupetit,A primer on spectral theory, Springer-Verlag, 1991.
[B&D] F.F. Bonsall, J.Duncan, complet normed algebras, Springer-Verlag,
1973.

[Sil] G.E. Silov, On a property of rings of functions, DoKl. AKad. Nauk.
SSSR, 58(1974),985-8.



A commutative radical Banach algebra.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

1. A Banach space with all products taken to be zero. Then every ele-

ment is quasi invertible.

2.The Banach space L'([0,1]) with the product (fg)(z) = [y f(z —
v)g(y)dy has f.(t) = t,0 < ¢t < 1 as a generator since fI'(t) = (ntn__ll)!,
the set of polynomials in one variable is LP-dense in C'([0,1]) and C([0,1]) is
LP-dense in L*([0,1]) (cf. [Rud2, Theorem 2.14]).

1 —1
Moreover || f* [|= [ |f2(t)]dt = ﬁl[, sor(fs) =lim, || f2||7=lim,(n)) T =

0. Therefore this algebra doesn’t have any character. Thus it is radical al-

gebra.

Ref.
[Rud2] W. Rudin, Real and complex analysis, McGraw-Hill, 1986.



An element r of a Banach algebra such r(z) <|| z ||.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

01
Consider = = in the C*-algebra M, (C) ~ B(C?). Then sp(z) =
0 0

{0}. So r(x) = 0. But || z ||= 1 (since its associated operator T'(z1,22) =

(z2,0) has norm 1).



A commutative Banach algebra A with a unique ideal; i.e. Rad(A).

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Suppose that H = L?(0, 1) with respect to the Lebesgue measure. Then
(V)(z) =[5 f(t)dt defines an operator V' € B(H) which is called Volterra
operator. Clearly the closure A of {p(V);p is a polynomial in z} in B(H)
is the commutative Banach subalgebra of B(H) generated by V and the
identity operator [.

An straightforward computation shows that (V" f)(z) = [5 (( t)n),l f(t)dt
and so || V™ ||< 1), and (V) = lim, || V" ||== 0. Hence sp(B(H),V) =
{0}. But by [Con, VII.Theorem 5.4], sp(A,V) is equal to the polynomially
convex hull of sp(B(H), V), hence sp(A,V) = {0}. But the maximal ideal
space of A is homeomorphic to sp(A,V) = {0}. So the only character on
Ais ¢(A) = X and ¢(xz) = 0 for z € A —C. Since ¢ is continuous, the
unique maximal ideal space is Rad(A) = Ker(¢) = the closure of {p(V);p is
a polynomial in z and p(0) = 0}.

Ref.

[Con]J.B. Conway, A course in functional analysis, New York, Springer-

Verlag, 1990.



A Banach algebra A that is a topological direct sum (as a Banach
space) of a pair of its Banach subalgebras

which are isometrically isomorphic to A.
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Consider A = [*. Define F = {(x,) € [*® ; 9, = 0} and F = {(z,) €
[®; x3,_1 = 0}. Obviously E and F are closed subalgebras of [*°. Moreover
A=F+F and ENF = {0}. So E is a complemented subspace of A with F" as a
complementary subspace. In addition, p((z1, 22, x3,...)) = (0,21,0, 29,0, x3,...)
is an isometrically isomorphism between [* and E. One can similarly define
an isomorphism between [* and F. Note that if E is a complemented infinite
dimensional subspace of [* then F is isomorphic to [*°. (cf. [J. Lindenstranss,

On complemented subspaces of m. Israel J. Math., 5, 1967, 153-156])



A Banach algebra with a proper dense two-sided ideal.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

1. C.(R) ={f € Cy(R); supp(f) = the closure of {z € R; f(z) # 0} is compact }

is a dense ideal of Cy(R). Note that the function f defined by

L x>0

1+z —
flay=3 "

1

1—x

r <0
belongs to Cy(R) — C.(R).

2. A= {f € C([0,1]); f(0) = 0} is a closed subalgebra of C([0,1]) not
containing the constant function 1. So A is a non-unital Banach algebra. Let

fot) =t ,t€0,1]. I ={f.g;9 € C[0,1]} is a proper ideal of A (since if

tsing te (0,1]

h(t) =
0 t=20

and for some g € C[0, 1],tg(t) = h(t) whenever ¢t € [0, 1] then lim,_,, sin% = ¢(0),
a contradiction). By the Stone-Weierstrass theorem, each f € A is the uniform
limit of a sequence (p,) of polynomials with p,(0) = 0. Moreover ¢ — pT(t)

belongs to C|0, 1] and tp”T(t) — f(t) uniformly on [0,1]. So f belongs to the

closure of I. Hence I is dense in A.



A Banach algebra A in which every singular element is a left or right

topological divisor of zero.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let A = B(X), the Banach algebra of bounded linear mappings from a Banach
space X into X, and T € Sing(A). For y € X and g € X, the rank one operator
y®g € B(X) is defined by (y®g)(z) = g(2)y (z € X).

If T isn’t 1-1, then there exists an element x # 0 such that To = 0. So if f € X#
and f(z) =1, then T(2®f) = Tx®f = 0. So T is a left divisor of zero.

If T(X) # X and T(X)~ # X, then by the Hahn-Banach theorem there exists
a non-zero functional f such that f(T'(X)) = 0. Therefore (x®f)T = 0, for all
x € X. Thus T is a right divisor of zero.

Finally if T(X) # X and T'(X)~ = X, then there exists a sequence (y,) in X
satisfying ||y,|| = 1 and Ty,, — 0. If f € X# with ||f|| = 1 and U,, = y,®f, then
Ul = llynll [lf]] = 1 and [[TU,]| = [[Tya®f|| < [[Tyn|| and hence TU, — 0.

Thus T is a right topological divisor of zero.



Two element a,b of a Banach algebra such that neither r(ab) <

r(a)r(b) nor r(a+b) < r(a)r(b).
ARk KRRk R ok

01 0 0
Consider a = and b = in My(C) ~ B(C?. Then

0 0 10
sp(a) = {0}, sp(b) = {0}, sp(a +b) = {—1,1}, sp(ab) = {0,1} and we have

required inequalities.



A normed algebra with non-open group of invertibles (and so the

algebra is not Banach).

L
Let A = C[z]', then I'nv(C[z]) = C — {0}, hence the elements p,(z) =

1+ 2(n € N) aren’t invertible. But lim, p,(2) = 1 € Inv(C[z]). Therefore
A — Inv(A) isn’t closed.

'The set C[z] of all polynomials in an indeterminate z with complex coefficients under
usual operations on polynomials and with the norm |[|p|| = sup|y<; [p(A)| is a normed

algebra.



A commutative Banach algebra whose unit ball isn’t norm com-

pact.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

The unit ball of C([0,1]) is not compact with respect to the supremum
norm, since if p,(z) = 2", then || p, ||= 1 and (p,) has no convergent
subsequence.

It’s well-known that a normed space Y is finite dimensional iff {y € Y || y ||<
1} is compact (cf. [Ker, Theorem 2.5-5]). C([0,1]) is infinite dimensional,

hence its unit ball is not compact.

Ref.
[Ker] E. Kreyszig, Introductory functional analysis with applications,John

Wiley & Sons, 1978.



A normed algebra A whose radical is isomorphic to C.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

a b
Suppose that A = {( ) ;a,b,c € C}. Then A is a subalgebra
0 c

a b
of My(C) ~ B(C?) and the only its characters are f(( )) = a and
0

a b . i
g((0 c))) = ¢, since

oo) (o) GO}

0 b
is a basis for A. Therefore Rad(A) = {(0 O) ;b € C} is isometrically

isomorphic to C.



(a) A separable Banach algebra.
(b) A non-separable Banach algebra.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

(a) {ry +irg;ry,ro € Q} is a countable dense subset of C. Hence C is a

separable Banach algebra.

(b) {*° isn’t separable. In fact if S = {a1,as,---,} is a countable set in
0 J|ap|>1

1, a, = (a¥)gep, and b, = , then b = (b,) € [ and for all
2 Jarl <1

n, || b—an [|eo> |bn —ap| > 1. So that the neighborhood of b with the radius
1 doesn’t intersect S. Thus S isn’t dense in [*°.

For another proof see [A&B, Problem 25.7].

Ref.
[A&B] C.D. Aliprantis and O. Burkinshaw, Problems in real analysis, Acad.
Press, 1990.



Two non-isomorphic Banach algebras with homeomorphically isomor-

phic invertible groups.
>kosk skosk sk sk sk skoskoskesk sk sk skoskoskosk sk sk skokoskoskokoskoskoskoskok
1. Let A; = C([~1, 5] U[$,1]) and A, = C([0,1] U {2}). Since [0,1] U {2}

isn’t homeomorphic to [—1, _—2l] U [%, 1], A; isn’t isomorphic to As. Also the

function which sends = € Inv(A;) to y € Gy defined by

[t 1) telo, 1]
() =9 [e(F)/e@)] et telF
| #(5)/2(F) t=2

is the desired isomorphism.
Ref.

[Zel] W. Zelazko, Banach algebras, Elsevier Publishing Company, 1973.



A commutative Banach algebra whose unit ball has no extreme point
(and so it isn’t the dual space of any Banach space by the Krein-Milman

theorem (cf. [Con, Theorem 7.4])).

KKKk koK sk ok sk ok sk sk skosk sk sk kokokokokskokok skokoskoskoskok

The unit ball of ¢y has no extreme point. For see this, let (x,) belongs to
the ball of ¢y. lim, x, = 0, so there exists a number N such that for all n > N,
lz,| < % Let y, = z, = x, forn < N, and let y, = x,+2 " and z, = x,—2" " for
n > N, then (y,) and (2,) belong to the unit ball of ¢y and (z,,) = %(yn) + %(zn)
So (x,,) isn’t is not an extreme point.

Ref.
[Con]J.B. Conway, A course in functional analysis, New York, Springer-Verlag,

1990.



(i) A singly generated Banach algebra

(ii) A Banach algebra can not be singly generated
Sk K
(i) C5((0,1]) is singly generated by the inclusion function ¢ — ¢, by the

Stone-Weierstrass theorem.

(ii) C(T'), where I is the unit circle in plane.



A Banach algebra without any topological divisor of zero.
stk Kok Sk kK sk Kk KRR R KR K ok
Clearly C has no topological divisor of zero. In fact C is the only Banach

algebra with this property. (cf. [W. Zelazco, On generalized topological divisors

of zero in real m-convex algebras, (1967) 241-244.]).



A commutative Banach algebra A without any minimal ideals.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let A= A(A)', J be a minimal ideal and, forn > 0, I, = {f € A; f(0) =
F1(0)=...= fM(0) = 0} (recall fO = f). Then (I,,),>0 is a strictly decreasing
sequense of (primary) ideals. Assuming 0 # f € J, then 0 # 2"*'f € I, N J. So
I,NJ=J. Hence (N>, I,)NJ = J and so J = 0, since N2, I, = {0}. Thus A

has no minimal ideal.

'Let A denote the closed unit disc {z € C,|z| < 1}. Suppose that A(A) denoted the set of
all elements of C(A) which are analytic on the interior of A. A(A) is a closed subalgebra of

c(a)



Two elements z,y (zy # yz) of a Banach algebra A such that e”.e¥ # ¢* V.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Consider A = B(I?) and the unilateral shift operator 7' on [?, defined by
T(x1,z2,...) = (0,21, 23, ...) and its adjoint T*(z1, x9, ...) = (29, 23, ...). Assuming
&k = (Okn)nen, k €N <ele’ 6,6 >=<e6,6 >=<&,& >=1, since T*E =
0 and T¢ = &. Also (T +T%)(&) = &, (T +T*)*(&) = & + &, ... and so

< eTHTE € >=< 6,6 > + < 0,6 > + < %(51 +&),& > +...> 1. Hence

el. el # T+,



A reflexive Banach algebra whose dual is also a Banach algebra.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

The Banach algebra [P!,1 < p < oo has the conjugate 17, ¢ = —F—, in

addition (19)# = [P.

Let (2, ) be a measure space and LP(Q,pu) for 1 < p < oo be the set of all complex
valued measurable functions f on €2 (we assume f is equal to g if f = g a.e.[u]) for which
Ifll, = (Jq |f|pdu)% < oo. LP(Q,p) with the norm ||.||, is a Banach space and is a Hilbert
space iff p = 2. LP(Q,u) denoted by IP(Q) if p is counting measure. In particular, IP(N)
denoted by [P.

If 1 < p < oo, then [? can be regarded as a commutative Banach algebra with coordinatewise
multiplication. (For p > 1, ||fgll, < Ifllpllglly is a conclusion of Hélder inequality.) The IP,

1 < p < oo, with the involution f — f is an involutive Banach algebra.



A Banach algebra A that cannot be a (vector space) direct sum of
its radical Rad(A) and a Banach algebra B that is homeomorphically

isomorphic with A/Rad(A).

KKKk koK sk ok sk ok sk sk skosk sk sk kokokokokskokok skokoskoskoskok

Consider the Banach algebra [? and the dense subalgebra [3 of [* consisting of
the sequences which vanish out of a finite set. Let Ay be the vector space direct
sum [2 @ C. Ay is an algebra with (z,a)(y, 8) = (zy,0),z,y € I*,a,8 € C. Also
||(z, a)|| = max(||z||, |a — >, x(n)|) is a norm on Ay. Let A is the completion
of Ag. Rad(A) =C(0,1). If (x,) € Ay and [z, o] denotes the image of (z, ) in
A/Rad(A), then [z, a] — z defines an isometric isomorphism of 4y/RadA into I3
which can be extended to an isometric isomorphism of A/RadA onto [?. Suppose
that there exists a homeomorphic isomorphism of /2 with a subalgebra A; of A.
Let & denotes & (n) = 0k, (k,n € N') and e, denotes the corresponding element
of A;. Choose a sequence ((zn,an))nen in Ag such that lim,(z,,a,) = e in
A. Since €2 = e, we have lim,(z2,0) = e;. Thus lim, z,(k) = 0 or 1 for all
k € N and also e;, € [2. The elements e are pairwise orthogonal idempotents.
Ifd, =3p, % and t, = S0, %, then (t,) converges in [*. But d, doesn’t
converge in A, a contradiction.

Ref.
[Ric] C.E. Rickart, General theory of Banach algebras, Princeton, Van Nastrand,

1960.



A commutative Banach algebra where 0 is the only nilpotent.
ookt ok ok ok ok ok Kok KKk ok Kk KRk ok
A C*-algebra is commutative if and only if it has 0 as its unique nilpotent

element. This is due to I. Kaplansky.(cf. [I. Kaplansky, Ring isomorphisms of

Banach algebras, Canada. J.Math. 6 (1954), 374-381.])



A non-commutative Banach algebra in which 0 is the only quasi-nilpotent.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let A be the free algebra on two symbols w, v, i.e. the algebra of all finite linear
combinations of words in u and v. The set of all such words is countable, {w;,},
and we take the standard enumeration given by u, v, u?, uv, v, u3, u?v,.... Let B
be the algebra of all infinite series © = Y0 | apwy,, where ||z|] = 300 ||ay,| < co.
Then B is a non-commutative Banach algebra. Let z € B,z # 0, and let a, be
the first non-zero coefficient in the series >27° | a,w,,. Then the coefficient of w;’
in ™ is precisely oy and so ||2™|| > |op|™ (m = 1,2,3,...), r(x) > [ap| > 0.
Note that B is an infinite dimensional non-commutative Banach algebra in which
the set of quasi-nilpotents coincides with the set of nilpotents.

Ref.
J. Duncan and A.W. Tullo, Finite dimensionality, nilpotents and quasi-nilpotents

in Banach algebras, Proc. of the Edin. math. Soc., vol 19(Series IT), Part 1, 1974.



A non-commutative radical Banach algebra which is an integral do-

main.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let A be the free algebra on two symbols w, v, i.e. the algebra of all finite
linear combinations of words in v and v. The set of all such words is countable,
{w,}, and we take the standard enumeration given by u, v, u? uv, v? u3, u?v, .. ..
Let y(w,) denote the length of the word w,, and let C' be the algebra of all

infinite series x = >°° | aw,, where ||z,|| =X 7|(?U" |), < 00. Then C'is clearly a
)

non-commutative Banach algebra and an integral domain. Let z € C and let k

be a positive integer. We have

o, |0, | - - |, |
"] <
%: Y(Why Why - - - Wy, )!
oy )t w)lon) o
v (wn,) + A (W) oy (wn )Ty (wy,)!
1
< ol

Hence r(z) = 0.
Ref.
J. Duncan and A.W. Tullo, Finite dimensionality, nilpotents and quasi-nilpotents

in Banach algebras, Proc. of the Edin. math. Soc., vol 19(Series IT), Part 1, 1974.



A non-reflexive Banach space isometric with its second conjugate space.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

For & = (21, Ty, 3, - - .), let ||z]] = sup[X(2p; — Tpsay)? + (Tpyss — Tpy)?]? Where
supremum is over all positive integers n and all finite increasing sequences of at
least two positive integers pi,ps,...,pns1- Let B be the Banach space of all x
for which ||z|| is finite and lim, x, = 0. Then B is isometric with B##  but is
isometric under natural mapping with a closed maximal linear subspace of B##.
This example is due to R.C. James (cf. [Jam]).

Ref.
[Jam] R.C.James, A non-reflexive Banach space isometric with its second conju-

gate space, Proc.of.nat.Acad. of sci., Vol 37, No 3, pp. 174-177, 1951.



A Banach algebra A with a Banach subalgebra B and an element b € B

such that sp(A,b) is a proper subset of sp(B,b).

ARk KRRk Kk
Consider A(A)! and the isometric isomorphism f — f|, from A(A) onto

the closed subalgebra B of A = C'(T) generated by 1 and inclusion z : T — C (T

is the unit circle). Then sp(B, z) = sp(A(A),z) = A and sp(A,z) =T.

'Let A denote the closed unit disc {z € C,|z| < 1}. Suppose that A(A) denoted the set of
all elements of C(A) which are analytic on the interior of A. A(A) is a closed subalgebra of

c(A).



A Banach algebra with an unbounded approximate identity.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Consider [P as a Banach algebra with coordinatewise operations. Let e, =

(1,1,1,...,1,0,0,...). Then sup,, ||e,|| = sup{¥/n ; n € N} = oo, and for every
————

n

1
r = (o) € 17, lim, ||ze, — 2|| = lim, (332,41 |ax|?)P = 0. Thus (ey) is required

approximate identity.



A topologically nilpotent Banach algebra. (A Banach algebra A is
1
called topologically nilpotent if the quantity N,(n) = sup{||z,...z,||7 ;

;€A ||z <1, 1<i<n} tends to zero as n — o).

KKKk koK sk ok sk ok sk sk skosk sk sk kokokokokskokok skokoskoskoskok

The Banach algebra C0,1] with the supremum norm ||.|| and convolution

multiplication is topologically nilpotent:

n—1
Defining u € C([0,1]) by u(t) =1 (0 < t < 1), we have u"(t) = (nt_ o)
(n = 1,2,...) and so ||[u"|| = ﬁ For arbitrary fi,...,f, € C([0,1]),

s e s )< Al (@), Henee (Mt erfullydy « 1

Now note that lim,, S S 0.

((n - 1))

S

Ref.
P.G. Dixon, G. A. Willis, Approximate identities in extensions of topological

nilpotent Banach algebras., Proc. Royal of Edin., 122A, 45-52, 1992.



A non-topologically nilpotent Banach algebra.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

1. The algebra C of complex numbers.

2.The Volterra algebra L'[0, 1]" isn’t topologically nilpotent ; For establishing
20 0<t<27
this, consider x;(t) = { :
0 27°<t<1
Then ||z;|| =1 (i =1,2,...) and for all n, ||z;...z,]| = 1.

'The Banach space L'([0,1]) with the product (fg)(z) = [y f(z —y)g(y)dy is a non-unital

commutative Banach algebra and called Volterra algebra.



A finite dimensional commutative algebra with nilpotent radical, an

identity modulo the radical, but no global identity.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let A = C? with multiplication (a,b)(c,d) = (ac,0) (a,b,c,d € C). Clearly
A? = A. Tts radical is R = {(0,b);b € C} and % ~ C. The identity of % lifts to
the idempotent (1,0) in A [Ric, Theorem 2.3.9], but there is no identity in A.
Ref.

[Ric] C.E. Rickart, General theory of Banach algebras, Princeton, Van Nastrand,

1960.



A Banach algebra having no bounded approximate identity.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

{zy ; =,y € [*} is a proper subset of Banach algebra [? equipped with the

) € 12 and if z,y, = %, then there exist

Sl=

coordinatewise operations. In fact (
: 1 1

> —= > —

an integer N such that for all n > N, |z,| > T or for all n > N, |y,| > T

and hence (z,) € [* or (y,) ¢ [>. Now Cohen’s factorization theorem [B&D,§11.

Corollary 11] implies that [? has no bounded approximate identity.

Comment. Using BA37, we conclude that the Banach algebra [ has neither
bounded aproximate identity nor unbounded one.

Ref.

[B&D] F.F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag,

1973.



A Banach space with a non-complemented closed subspace.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Co 1s a non-complemented closed subspace of [*°.
(cf. [R.S. Philips, On linear transformations, Trans Amer Math. Soc. 48
(1940), 516-554.])

Newmann and Rudin gave another example, i.e. the subspace of C(T)
consisting of the boundary values of analytic functions.
(cf. [K. Hofman, Banach spaces of analytic functions, Prentice-Hall, Engle-

wood Cliffs, N.J. 1962.])



A complete metrizable linear space whose metric cannot be ob-

tained from a norm.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

1. The linear space S consisting of all complex sequences with the met-
o0

. |zi — yil . . .
ric d((z;), (y;)) = : is a complete metric space. Since
o ;2l(1+|xi—yi|)

d(2(1,1,--+),(0,0,---)) # 2d((1,1,---),(0,0,---)), the space (S,d) is not

normable.
lz—yl[+1 z#y

rT=y
is a metric on X, but can not be obtained from a norm, since if x is a nonzero

vector of X then d(2z,0) # 2d(x,0).

If (X, || . ||) is a normed linear space then d(z,y) = {

Comment. C*([0, 1]) with its usual topology is a complete metrizable linear

space whose topology cannot be obtained from a norm.



Two non-isometrically isomorphic spaces with the same duals. So
that a such dual space could not be a W*-algebra under any mul-

tiplication and involution.

KKKk koK sk ok sk ok sk sk skosk sk sk kokokokokskokok skok skoskoskk

cp and ¢ are both closed subspaces of [*. In addition for each z = (z,,) €

IY, py : cg — C given by (Yn) — anyn is a bounded linear functional on
cp with the norm || p, [|=]| = || C;Le_;rly ¢ is isometrically isomorphic to ['.
Also for each z = (,,) € I', 1, : ¢ — C given by (y,) — xlli%nxnﬂL incnyn is
a bounded linear functional on ¢ with the norm || n, ||=|| = ||. Ob\?;i:olusly c*
is isometrically isomorphic to [*. But by BA25.DVI the closed unit ball of ¢
has no extreme point while the closed unit ball ¢ contains at least (1,1,1,--+)
as an extreme point (since if 1 = tx, + (1 — t)y,, with |z,| <1 and |y,| <1,
then 1 = tRex,, + (1 — t) Rey, for all n, so that Rex,, = Rey, = 1 and hence

xn, =y, = 1 for each n). Thus ¢y and ¢; are not isometrically isomorphic.

Now by [Sak1, Corollary 1.13.3], I* can not be a WW*-algebra.

Re.
[Sak1] S. Sakai, C*-algebras and W*-algebras, Springer-Verlag, 1971.



A Banach space X such that all its closed subspaces are comple-

mented.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Any Hilbert space.
Note that Lindenstrauss and Tzafriri, showed that each Banach space for
which every closed subspace is complemented is isomorphic to a Hilbert space
(cf. [J. Lindenstrauss and L. Tzafiriri, On complemented subspaces problem.

Israel J. Math., 2, 1984, 375-378].)



A Banach space which isn’t metrizable in weak topology.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Every Hilbert space has this property (cf. [Hal, problem 21]).

Comment. It is probably true that no infinite dimensional Banach space is
metrizable in the weak topology.

Ref.

[Hal] P.R. Halmos, A Hilbert space problem book, Princeton, Van Nostrand,
1967.



A Banach space which is not an inner product space.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

The supremum norm on Cfa, b] can not be obtained from an inner prod-
uct. Since if f(t) = 1 and g(t) = =%, then || f [|=]| g [|= L[| f — g II=
sup{[1 - =2f;¢ € [a,b]} = Tand | £+ g ||= sup{[1+ =2];¢ € [a,b]} = 2 and

so the parallelogram equality || f+g |* + || f—g [P=2] f [* +2 [l ¢ |I”

(which is satisfied in every inner product space) isn’t held.

Comment. Indeed this Banach space is not an inner product space in any

equivalent norm.



An incomplete inner product space.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

The linear space Cfa,b] of all continuous complex-valued functions on
[a,b] with the inner product < f,g >= [ f(x)g(z)dz is not complete with
respect to the norm || f [|=< f, f >2= (f*|f(x)|2dz)z. In fact the sequence
(fn) where

0 a§x<”+7“
fu@) =9 (n+no)(z — 252) B <z < brey Lo
b+ 1
1 Ta+n+no<x§b

(no is a natural number greater than 2-)

is a Cauchy but not convergent.



Two closed densely defined operators 7" and S on a Hilbert space

such that 7 + S isn’t closable.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Consider a separable infinite dimensional Hilbert space H with an or-
thonormal basis (£,). Let D = {n € H;>02 n*l < n,& > | < oo}, ( =
>, n7'E,, and define the operators S and T with the domain D, which is

dense in H, by

Sn=>n*<n&>& , Tn=Sn+<Sn,(>& (neD).

n=2

Then —S and T are closed densely defined and T + (—S) isn’t closable. (cf.
Problem 2.8.43 of [K&R1])

Ref

[K&R1] R.V. Kadilon and J.R. Ringrase, Fundamentals of the theory of
operator algebras (I), Acad. Press, 1983.



A Hilbert space whose Hamel dimension and Hilbert dimension

are different.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

The Hilbert space [? has the orthonormal basis (e,) with e,(m) = dn;
m,n € N. Hence its Hilbert dimension is Xy. But the set of all sequences

3

Tq =< 1,a,0%, 0% --- >,0 < a < 1 is a linearly independent uncountable

subset of [?. Thus the Hamel dimension of [? isn’t Nj.

Comment. This Hilbert dimension is probably the only one which this

can happen.



A nonclosable unbounded operator on a Hilbert space.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Let H be a separable Hilbert space with the standard orthonormal basis
(&n). Define T on H by T¢, = n& and extend T to the dense linear sub-
space D(T) of finite linear combinations of basis elements &, ( we denote the
extension of 7" by the same 7). Then T is a densely defined unbounded

T
operator on H ( since lim | & I = limn = o00). Moreover T is not closable,
n—0 || gn || n—0

for limg—n =0 but limT(g—n) =
n—0n n—0 n



On a separable infinite dimensional Banach space X there exists

another norm under which X isn’t separable.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Suppose that {e;;i € I'} is a Hamel basis for X and I is countable. For
each 7 € I, let X; denote the linear span of {eq,eq,- -, e,}, then X = U | X;.
But the X; are proper closed subspaces of X and so are nowhere dense, that
is impossible by the Baire category theorem. Thus I is uncountable.

Let a € X,a =) )\e; where all X except finitely many are zero. Set || a [|'=

i€l
> |Ail. Then || . ||" is obviously a norm on X. For i # j,|| €, —¢; ||'= 2 and
icl
I is uncountable, hence (X, || . ||') has no dense countable subset.



Notation

In this site we use X# for the topological dual of a normed spaceX, S’ for
the commutant of a subset S of B(H) and T* for the Hilbert adjoint of an

operator 7' in B(H) for any Hilbert space H.

Main Examples
(I) The set of complex numbers C with usual addition, multiplication
and the absolute value as a norm is a unital commutative Banach algebra.
sk skok sk sk sk sk sk ok sk ok sk ok sk sk skskskok skok ok ok skok skok

(IT) C™ with the coordinatewise addition, scalar multiplication and the

inner product
n
< (21, 2n)s (Wi, wy) >= D 20 (1)
i=1
is a Hilbert space.
Sk K K K
(ITIT) The space C? (see (I1)) with the product (a,b)(a’, ') = (ad’, ab’+a'b)
is a unital commutative Banach algebra.
Sk K K K
(IV) Let X be a non-empty set and Y is a normed (Banach) space. Then

the set [*°(X,Y) of all bounded mappings of X into Y with the pointwise

addition (f + g)(z) = f(x) + g(x),x € X; poinwise scalar multiplication



(Af)(x) = Af(z), A € C,z € X; and supremum norm || f|| = sup{|f(z)|;z €
X} is a normed (Banach) space. If Y is normed algebra then (*(X,Y") with
the pointwise product (fg)(x) = f(x)g(x) is a normed algebra.

We denote [*(E,C) with [*°(F) that is a unital cammutative C*-algebra
under the involution f* = f, the conjugate of f. Also [*°(N) is denoted by
[*°.

The set of all convergent sequences of complex numbers, ¢, is a closed *-
subalgebra of [*° and the set of all elements of ¢ converging to zero, cg, is a

closed *-subalgebra of c.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

(V) If X is a topological space, then the set C,(X) of all bounded con-
tinuous complex valued functions on X is a closed *-subalgebra of [*°(X)
containing the constant function 1. So C,(X) is a unital commutative C*-

algebra.

stk st st sk st ok ok sk ok sk st sk ok sk ok ok ok sk ok ok skok ok

(VI) If X is a locally compact Hausdorff space, then the set Cy(X) of
all continuous complex valued functions on X vanishing at infinity (i.e. for
each ¢ > 0, the set {x € X;|f(x)| > e} is compact) is a closed *-subalgebra
of [*°(X) and so is a commutative C*-algebra.

Co(X) is unital iff X is compact. Each non-unital commutative C*-algebra

is of this form (cf. [Mur]).

KKKk koK sk ok sk ok sk sk skosk sk sk kokokokokskokok skok skoskoskk



(VII) If X is a compact Hausdorff space, then the set C'(X) of all continu-
ous complex functions on X is exactly Cp(X) and so is a unital commutative
C*-algebra. Each unital commutative C*-algebra is of this form (cf. [Mur]).
By ([K&R1, Th. 5.3.1]), An abelian W *-algebra is isometrically x-isomorphic
to C'(X) for some extremely disconnected compact Hausdorff space X.

(A topological space is called extremely disconnected or Stonean if the closure

of any open set is open).

KKk sk okok sk ok sk ok sk sk skosk sk sk kR ok kokskokok skok skoskoskk

(VIIT) Let A denote the closed unit disc {z € C,|z| < 1}. Suppose
that A(A) denoted the set of all elements of C'(A) which are analytic on
the interior of A. A(A) is a closed subalgebra of C'(A) (Since if f, € A(A)
and (f,) converges to f € C(A) in the norm of C(A) and v is a simple
closed path in the interior of A, then nh_)rgo/vfn(z)dz = /Vf(z)dz but by
Cauchy’s theorem [ f,(z)dz = 0(n € N). So [, f(2)dz = 0. Now Morera’s
theorem implies that f is analytic in the interior of A), and so it is a unital

commutative Banach algebra. We call this the disc algebra.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

(IX) Let (€2, 1) be a measure space and L?(£2, ) for 1 < p < oo be the
set of all complex valued measurable functions f on Q (we assume f is equal
to g if f = g a.e.[u]) for which ||f]l, = (fy |f]Pdp)? < oo. LP(Q, ) with
the norm ||.||, is a Banach space and is a Hilbert space iff p = 2. LP(, p)
denoted by [P(€2) if p is counting measure. In particular, I?(N') denoted by

IP. Let H = [?, (a,) be a bounded sequence of complex numbers, and (&,)



be the (usual) standard orthonormal basis of H, that is, (&,)(m) = Opm,
n,m € N (6 denoted the kronecker delta), so that { = i < (& > &, for
any ( € H. Then the operator T' € B(H) defined by T§:::1 pényt is called
a weighted shift with the weights (). If oy, = 1 for all n, then T is called
unilateral shift operator. It is straightforward to show that ||T'|| = sup,, |au],
r(T) = lim s%p| I:H_:amﬁ/’f and T%& = 0 and T*E, = @& 1.

If 1 < p < o0, then [P can be regarded as a commutative Banach algebra with
coordinatewise multiplication. (For p > 1, || fgll, < ||fll»llgll, is a conclusion

of Hélder inequality.) The [?, 1 < p < oo, with the involution f — f is an

involutive Banach algebra.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

(X) The Banach space L'([0,1]) with the product (fg)(z) = Jf5 f(x —
y)g(y)dy is a non-unital commutative Banach algebra. It is called Volterra
algebra.

(XI) Let G be a locally compact group and p a left invariant Haar
measure on (3, i.e. a Borel measure satisfying the following conditions.

(a) p(zE) = pu(E), for every x € E and every measurable £ C G.

(b) w(U) > 0, for every non-void open set U C G.

(c) u(K) < oo, for every compact set K C G.

With the notation IX, and under the product given by the convolution (f *
9)(s) = Jo f(t)g(tts)du(t) (s € G), L'(G) is a commutative Banach algebra
which called the group algebra of G. In particular, we can cansider L'(R),
where the Lebesgue measure is an invariant Haar measure on R. Also if G' be

an (algebraic) group, then G with the discrete topology is a locally compact

4



group. A left invariant Haar measure on G is the counting measure on G.
The corresponding group algebra, denoted by ['(G) and is called discrete
group algebra.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

(XII) Let S be a semi-group and « a positive real-valued function on S
such that a(st) < a(s)a(t) (s,t € S). If I*(S, ) is the set of all complex-
valued functions f on S for which Y |f(s)||a(s)] < oo, then I'(S,a) with

sES
the usual pointwise addition and scalar multiplication and the product (con-

volution) (f * g)( Zf (if tu = s has no solutions, we assume
tu=s
(f *g)(s) = 0), and with the norm || f|| = > _|f(s)|a(s)is a Banach algebra.
seS

If a(s) =1, I'(S,a) = 1'(S) is called discrete semi-group algebra, Moreover
if S =G is a group then ['(S) is the same discrete group algebra I!(G).

stk st st sk st ok ok sk ok sk st sk ok sk ok ok ok sk ok ok skok ok

(XTIT) Let (2, ) be a measure space. Then the set L>(€, ) consisting
of all complex valued measurable functions f on Q (with identifying func-
tions which are almost everywhere equal) for which ||f||.c = inf{\;pu{z €
Q;|f(x)] > A} = 0} < oo with the essential norm ||.|| and pointwise opera-

tions is a unital commutative Banach algebra.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

(XIV) If (€2, ) is a measure space, then B (€2) that is the set of all
bounded complex valued measurable functions on €2 is a closed subalgebra of

[*(€2) and L*>®°(2, 1) (again we identify almost everywhere equal functions).

5



Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

(XV) The algebra C™(]0, 1]) of the complex valued m times continuously

m

1
differentiable on [0, 1] with the norm || f|| = Zﬁ sup |£®)(2)| is a unital
commutative Banach algebra. Its maximal 1deals are premsely the I, =

{f; f(z) = 0} where z € [0,1]. Hence C™([0, 1]) is semi-simple.

stk st st sk st ok ok sk ok sk st sk ok sk ok ok ok sk ok ok skok ok

(XVI) Suppose W is the set of all complex-valued functions f defined on

the interval [0, 27] of the form f(¢) = > ayexp(ikt) (¢ € [0,2n]), where the
o € Cand Y _|ay| < oo. The set W WftGthhe usual pointwise operations and
with the norI;n £l = > |owl is a commutative Banach algebra and called
the Wiener algebra. T]Icleeie is an isometric isomorphism between [*(Z) and

W given by f —s f where f(t) =Y f(k)exp(ikt) (t € [0,2x]).
kEZ
Skoske skosk sk sk skosk skosk sk sk skosk skoskeoskoskoskosk skoskoskeoskoskoskoskosk skok

(XVII) Let X and Y are normed spaces. Then the set of all bounded
linear mappings (bounded operators) from X into Y with the operator norm
|7\ = sup{||T=||;||z|| < 1} and with the pointwise addition and scalar
multiplication is a normed space. It is Banach iff Y is Banach.

If Y = X, the space B(X,X) = B(X) with the product (ST)z = S(Tx) is

a normed algebra ( Banach algebra, if X is a Banach space).

stk st st sk st ok ok sk ok sk st sk ok sk ok ok ok sk ok ok skok ok

(XVIII) In (XVII) if X = H is a Hilbert space, then B(H) with the
involution 7' — T* being defined by < T*z,y >=< z,Ty > (x,y € H) is

6



a C*-algebra. Each C*-algebra is isometrically isomorphic to a norm closed

x-subalgebra of B(H) for a Hilbert space H.

stk st st sk st ok ok sk ok sk st sk ok sk ok ok ok sk ok ok skok ok

(XIX) An operator from normed space X into normed space Y is called
compact if T'(U) is relatively compact in Y, where U is open unit ball of X;
or equivalently for each bounded sequence (x,) in X, (T'z,,) has a convergent
subsequent in Y. The set of all compact operators from X into Y is denoted
by K(X,Y) that is a subspace of B(X,Y).

If X is a Banach space, K(X) = K(X,X) is a closed two-sided ideal of
B(X).

stk st st sk st ok ok sk ok sk st sk ok sk ok ok ok sk ok ok skok ok

(XX) Identifying M, (C), the algebra of all n x n matrices with entries
in C, with B(C™) = K(C™). So it is a unital non-commutative C*-algebra.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

(XXI) Let H be a Hilbert space and x®y is the (one-rank) operator given
by (z®y)z =< z,y > x. Suppose that (e;)icr, (fi)ier are othonormal bases
for H and (););e; is a family of complex numbers indexed by the same set I.
The operator T = Y _)\;e;®f; is well-defined and belongs to B(H) iff ();) is
bounded and then |l|6717|| = sup{|\;|;i € I}.

KKKk koK sk ok sk ok sk sk skosk sk sk kokokokokskokok skok skoskoskk

(XXIa) An operator T is called of finite rank n if n = dimT(H) < oc.
The set F(H) of all finite rank operators is a self-adjoint two-sided ideal of

7



B(H). It is consisting of all operators as > \e;®f; € B(H) such that \; = 0
i€l
for all ¢ except finitely many .

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

(XXIb) The two-sided ideal of the compact operators K (H) is self-adjoint
and F'(H) is norm-dense in K(H). K(H) is consisting of all operators as T' =
Z)\iei®fi € B(H) such that the ); are positive (the A\? are the eigenvalues
(Z)efIT*T). This sum has either a finite or a denumerably infinite number of

terms; in the last case, A\; — 0.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

(XXIc) The set S(H) of all operators T for which Y ||Te;|* < oo is
a self-adjoint ideal of B(H). These operators are calleczlelHilbert—Schmidt
operators on H. The algebra S(H) with the Hilbert-Schmidt norm ||| =
(Y_||Te;||*)/? is a Banach algebra. It contains operators of finite rank as
ale(iense subset. For any pair of operators T and S in S(H), the family
(< Tej, Se; >)er is summable. Its sum (A, B) defines an inner product
in S(H) and (T,T)"? = ||T||s. So S(H) is a Hilbert space (independent,
on the choice basis (e;)). S(H) C K(H). S(H) consists of precisely those

compact operators T' = Y _\;e;®f; for which Y "A? < co. In addition ||T'||, =
(A | |

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

(XXId) The set of all products of two Hilbert-Schmidt operators is de-

noted by N(H) and its elements are called trace-class operators. This set

8



is a self-adjoint two-sided ideal of B(H) and coincides with the set of those
operators T for which Y < |Te;,e; >< oo where [T is the absolute value
of T in the C’*—algebraleBI(H). If | 7)), = > < |T|e;,e; >, then N(H) with
this norm is a Banach algebra. F(H) isizl dense subset of N(H). N(H)
is contained in K(H) and contains S(H). The elements of N(H) are pre-

cisely the compact operators T' = Z)\iez@ fi for which Z)‘i < 0o. Moreover,
iel i
IT]l =D\
i

stk st st sk st ok ok sk ok sk st sk ok sk ok ok ok sk ok ok skok ok

(XXII) The set C[z] of all polynomials in an indeterminate z with complex
coefficients under usual operations on polynomials and with the norm ||p|| =

SUp <1 [P(A)] is a normed algebra.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

(XXIII) The set of all formal polynomials of degree at most n with
the usual addition, scalar multiplication and product (but together with the

convention that 2% = 0 if k > n) and with the norm |jp|| = Y _|ay| (p(z) =
k=1

n
Zakxk) is a finite dimensional Banach algebra.
k=1

KKk sk koK sk ok sk ok sk sk skosk sk sk kok kKoK skokok skok skoskoskk

(XXIV) The algebra C([0,1]) with the supremum norm ||.|| and multipli-
cation (f * ¢)(t) = [y f(s)g(t — s)ds is a Banach algebra.
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A construction of a bounded approximate identity for a commutative

C*-algebra A.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let A = Cy(X) be a commutative C*-algebra. Consider the set A consisting
of all compact subsets of X. (A, C) is a directed set. For each compact subset K
of X, by Urysohn’s lemma, there exists a function fx € Co(X) equal to 1 on K
satisfying 0 < f < 1. For each g € Cy(X) and givene > 0, Ky = {z € X |g(x)| >
e} is compact. Hence for all K D Ky, || fx9 — 9lloc = Supgex |fx(2)g9(x) —g(z)| <
. Therefore limgep frg = g, Thus (fx)kea is a bounded aproximate identity

for A.



Two element z,y in a C*-algebra A such that sp(xy) # sp(yz).

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let A = B(I?), = be the unilateral shift operator on [?, defined by T'(ay, as, ...) =
(0, a1, 9, ...), and y = T*. Then TT* (o, g, . ..) = T(ag, a3, ...) = (0, a9, 3, . . .)
and 77T (ay, g, . ..) = T(0, a1, g, . ..) = (a1, g, . ..). Hence sp(T*T) = {1} but

0 € sp(TT*) (since (T'T*)(1,0,0,...) =(0,0,...)).



An involutive Banach algebra A which isn’t a C*-algebra.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Consider A = A(A)'. Then f*(z) = f(z) gives an involution on A such

that ||fll = sup.ep|f(2)| = sup.eplf(2)| = |If*[|. Consider f(z) = 2* and
g(z) = z, then g is self-adjoint and f = gg*. So f is positive and we must have

sp(f) C [0,00) contradicting sp(f) = A. Hence A isn’t a C*-algebra.

'Let A denote the closed unit disc {z € C,|z| < 1}. Suppose that A(A) denoted the set of
all elements of C(A) which are analytic on the interior of A. A(A) is a closed subalgebra of

c(A).



An involution # on Banach algebra M,(C), two normal matrix 7" and S

such that TS = ST but TS# # S#T, S+T isn’t normal and ||SS¥|| # ||S]%.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Set
0 0 0 1 0 0 0 O 0 00 O
0 01 0 1 0 0 0 0 00 O
U= , S = and T =
01 0 O 0 0 0 O 0 0 0 O

Then Q% = U~'Q*U where Q* denote the conjugate transpose of @ is an involu-
tion on M4(C). An straightforward computation shows that S and 7" has desired
properties.

Ref.

[Rud1] W. Rudin, Functional analisis, McGraw-Hill, 1989.




A Banach algebra with a unique C*-involution.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Every C*-algebra has this property. Indeed if A is a untial Banach algebra
which is C*-algebra with respect to involutions x and #, then if x = x* and f
be a state on A (i.e., by [K&R1, Theorem 4.3.2] is a bounded linear functional
satisfying ||f|| = (1) = 1) then, f(z) = f(z*) = f(z), so that f(i(z — 2#)) =
i(f(x) — f(x)) = 0. Therefore, by [K&R1, Proposition 4.3.3] sp(i(x — %)) = {0}.
Hence i(z — z#) = 0, by [K&R1, Proposition 4.1.1.(i)]. So z# = z = z*. For
an arbitrary element x with the real and imaginary parts x; and x5, we have

¥ = 3 — iry = x¥. ( If A doesn’t have a unit, it is enough to consider its

unitization).

Ref.
[K&R1] R.V. Kadilon, J.R. Ringrase, fundamentals of the theory of operator

algebras (I), Acad. Press, 1983.



A (C*-algebra in which invertible elements are dense.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Consider [*°(2), the C*-algebra of all bounded mappings from a set €2 into C,

felrQ),e>0. If
{f(t) f()] > e
g(t) =

e |f)l<e
we have g € [*°(Q), ||lg — f|| < 2e. Since inf |g(t)| > € > 0, g is invertible.

Comment. C([a,b]) provides a separable example.



A liminal C*-algebra which isn’t postliminal.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let A denote Toeplitz algebra. K (H?) is liminal. ﬁ is *-isomorphic to
C(T), so it is abelian and therefore liminal. Hence A is postliminal .But identity
representation of A on H? is irreducible and not finite dimensional, so A isn’t
liminal. For details see [Mur, Example 5.6.4].

Ref.

[Mur] G.J. Murphy, C*-algebras and operator theory, Academic Press, 1990.



A closed subalgebra of a C*-algebra that isn’t self-adjoint.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

The disc algebra A(A) ! is a closed subalgebra of the C*-algebra C(A). If f
and f both belong to A(A), then by the Cauchy-Riemann equations f will be

constant. So A(A) isn’t self-adjoint.

L(VIII) Let A denote the closed unit disc {z € C, |z| < 1}. Suppose that A(A) denoted the
set of all elements of C'(A) which are analytic on the interior of A. A(A) is a closed subalgebra

of C(A).



A closed left ideal of a C*-algebra without any left approximate identity.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

If £ is a unit vector in a Hilbert space H with dimension at least 2, then
A ={T € B(H);T¢ =0} is a closed left ideal in the C*-algebra B(H). If A has
a left approximate identity {S,} and 1 # 0 is a vector in H such that < £,n >=
0, then £®n € A and so lim, S,(§®n) = £&n. Thus lim, [[(S.€ — §)®n|| =
lim, ||Sa& — &|||Inl] = 0, hence 0 = lim, ||[So& — &|| = ||€]|, a contradiction. Thus
A has no left approximate identity.

Note that for (; and (5 in H the rank one operator (;®(, is defined by

((1®C2)(C3) =< (3,2 > G-



A nonclosed ideal that is not self-adjoint in a commutative C*-algebra.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Consider C*-algebra A = C'(A) and the ideal [ = fA={fg; g € A}, where
f(z) = z. f*(2) = z and if f* € I, then there exists an element g € A such
that f* = fg. So ¢(0) = lim,,¢g(z) = lim,_, %, a contradiction. Thus I isn’t

self-adjoint.



A closed ideal I of a commutative C*-algebra A and a closed ideal J of

I such that J isn’t an ideal of A.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let A=C([0,1]), I = Af and J =Cf + Af? where f(t) =0 <t < 1. Then
J is an ideal of I and I is an ideal of A; but f € .J and f.f% ¢ J (otherwise, there
exist A € C and g € A such that f.f2 = A\f+g/2. So limy_,t2 = A+limy_,o tg(t).
Therefore A = 0 and ¢2 = tg contradicting the continuity of g. Thus J isn’t an

ideal of A.



A C*-algebra A where every unitary element is of the form exp(ih) for

a self-adjoint h € A.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Suppose that A = C([0,1]). For each unitary v € A, the mapping t — u,
from [0, 1] to the unitary group of G of A with u;(z) = u((1 — t)x) connects u
to u(0)1. If u(0) = exp(if) for some real number 0, {exp(ith)1;0 < ¢t < 1} in
G connects 1 to u(0)1. Therefore u is connected to 1. Now by [K&R3, Exercise

4.6.7], u = exp(ih) for some h € A,

Comment. By [K&R1, Theorem 5.2.1], A isn’'t W*-algebra. Ref.

[K&R1] R.V. Kadilon, J.R. Ringrase, Fundamentals of the theory of operator
algebras (I), Acad. Press, 1983.

[K&R3] R.V. Kadilon, J.R. Ringrase, Fundamentals of the theory of operator

algebras (IIT), Acad. Press, 1991.



A (*-algebra that isn’t a von Neumann algebra.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

K(H), where H is a separable infinite dimensional Hilbert space is a C*-
algebra but not a von Neumann algebra. In fact if (e,)pen is a orthonormal
basis for H and P, = Y. | ¢;®e;, then P, is a finite-rank projection converging
strongly to the identity operator I (since for each x € H, I(z) =z = Y%, <
z,e; > ¢; = lim, P,(z)). If K(H) were a von-Neumann algebra, it should be

I € K(H), a contradiction.



A (C*-algebra A in which the closed unit ball of A" isn’t the closed
convex hull of the projections of A. (Note that the closed unit ball of
positive elements of each hereditary C*-algebra A of a von Neumann

algebra is the closed convex hull of its projections ).

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

The only projections of C([0,1]) are 0 and 1. So the closed convex hull of

C([0,1]) is {f |3c € [0,1]; f = ¢}, not equal to (C([0,1]))].



A primitive C*-algebra with a unique nontrivial closed bi-ideal (and so

that it is not simple).

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let H be a separable infinite dimensional Hilbert space and A = B(H). Then
K(H) is a nontrivial closed bi-ideal of B(H), and if I is a nontrivial closed bi-
ideal of B(H), we have F(H) C I (cf. [Mur, Th. 2.4.7]). Hence K(H) C I.
If I £ K(H), then I has an infinite-rank projection p (cf. [Mur, Cor. 4.1.14]).
For each infinite-rank projection ¢, there exist u € B(H) such that p = u*u
and ¢ = uu* (if (e,) and (f,) are orthonormal basis for p(H) and ¢(H) resp.,
define u(e,) = f, and u = 0 on p(H)*) so ¢ = upu* € I. Hence I = B(H), a
contradiction.

Since B(H)" = C1 (For (C1)" = B(H) and this is because of (C1)” = C1), the
identity representation B(H) — B(H) is a faithful irreducible representation.

Hence B(H) is primitive.

Ref.

[Mur] G.J. Murphy, C*-algebras and operator theory, Academic Press, 1990.



A non-separable von Neumann algebra with a (unique) separable closed

*-bi-ideal.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let H be a separable infinite dimensional Hilbert space and (x,) be a dense
sequence in H. Then K(H) which is the closed linear span of rank-one projec-
tions, is the closure of the linear span of z,®x, with rational coefficients,hence

it is separable. If (e,) is an orthonormal basis for H and for each subset S of the

e, NneES
PS(en): )

0 otherwise

natural numbers N,

then ||Ps — Pg|| =1, for S # S’. Thus {Ps}gscon cannot be in the closure of any
countable sequence of B(H). Thus B(H) isn’t separable.

Note that for x and y in H the rank one operator z®y is defined by

(2®y)(2) =< z,y > x.



A primitive C*-algebra A acting on a Hilbert space H such that ANA' =

{0} (A’ is the commutant of A in B(H)).

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let H be an infinite dimensional Hilbert space, then K (H) is primitive, since

the identity representation

K(H) — B(H)

T — T

is faithful irreducible (if T € K(H)', then for each z in H, T'(z®x) = (x®x)T.
So Tx®zx = x®T*(x). Hence < x,x > Taw =< z,T*z > x. So Tx = A(x)z for
some A(z) € C. For linearly independent vectors x and y, A(z + y)(x + y) =
Tx+y) =Tx+Ty = MNz)x + ANy)y. So Az +y) = Ax) = A(y). Hence for
each e in an orthonormal basis F of H, A(e) = A(eg), where eq is an arbitrary
fixed element of E. Therefore Tx = T(X .cp fe€) = Decr teA(€0)e = A(eg)x. So
T = Meo)Iy. Thus K (H)' C CI. Obviously CI; C K(H). So K(HY = CIy).
But Iy ¢ K(H). So K(H)N (K(H)) = {0}.

Note that for x and y in H the rank one operator ®y is defined by

(2®y)(2) =< z,y > x.



A non-primitive C*-algebra.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

C[0,1]. In fact if A is a commutative primitive C*-algebra, then A has a
nonzero faithful irreducible representation (H, ). So (¢(A))" = C1. But ¢(A) is
commutative, so ¢(A) C (¢(A)) = C1. But ¢(A) # {0} so p(A) = C1. Thus

A~ p(A)=C1.



A simple C*-algebra.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

K(H) is a simple C*-algebra. For if I is a nonzero closed bi-ideal of K(H),
then it is a closed bi-ideal of B(H), so by [Mur, Th. 2.4.7) F(H) C I, hence

K(H)=F(H) CI=1. Therefore I = K(H).

Ref.

[Mur] G.J. Murphy, C*-algebras and operator theory, Academic Press, 1990.



A non-unital C*-algebra with compact primitive ideal space.
ookt ok ok ok ok ok Kok KKk ok Kk KRk ok
If H is an infinite dimensional Hilbert space, then the non-unital C*-algebra
K(H) is simple. By (CW17), (K(H))" = C1, so the identity representation
K(H) — B(H)
T +— T
is a faitful irreducible representation, hence {0} is a primitive ideal of K (H). By

(CW19), K(H) is simple, so primitive ideal space of K(H) is {{0}}, a compact

space.



A non-liminal (CCR) C*-algebra.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let H be an infinite dimensional Hilbert space. Then faithful irreducible

representation

B(H) — B(H) (B(H)Y =C1)

T — T

together with B(H) # K (H), shows that B(H) isn’t liminal.

Comment. Another example may be found in CW22.



A (C*-algebra A and a closed bi-ideal J of A such that and J are

o

liminal, but A is not liminal.

Skeskoskokokosk skokokoskoskokok skokokosk sk kokoskok ok skokokokoskok

Let H be an infinite dimensional Hilbert space and I be the identity operator
on H. Then A = K(H) + CIy isn’t liminal (otherwise, since identity representa-
tion K(H) + Cly — B(H) is nonzero irreducible ((K(H) +Cly)' = K(H)' =
CIy (see CW1T7)) we should have Iy € K(H), a contradiction). But K(H) is
liminal, since each nonzero irreducible representation of K (H) is unitarily equiv-
alent to identity representation K(H) — B(H) (see [Mur, page 146]). Also
é ~ CIy which is finite dimensional and so is liminal (Every finite dimensional
C*-algebra B is liminal, since if (Hy, V) is a nonzero irreducible representation of
B, then for  # 0 in Hy, ¥(B)z is finite dimensional (for ¥(B) is finite dimen-
sional). If (uy), be any approximate unit for B, then (¥ (uy)), strongly converges
to Iy so x € [¥(B)x] = VU(B)z. Hence ¥(B)x is a nonzero (closed) subspace of
H, invariant for W(B), so by irreducibility, ¥(B)x = H;. Therefore H; is finite

dimensional. Thus ¥(B) C B(H,) = K(H,)).

Ref.

[Mur] G.J. Murphy, C*-algebras and operator theory, Academic Press, 1990.



An operator of index zero which isn’t invertible.
SRR R KRRk KR Rk
Let P be a non-trivial finite-rank idempotent in B(X) (X is a Banach

space), then I — P, the difference of an invertible operator and a compact

operator, is Fredholm, of index ind(I) = 0, and non-invertible.



A compact operator with no eigenvalues.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Let X = C([0,1]), v : X — X be the Volterra operator v(f)(x) =
Jy f(t)dt. If S is the closed unit ball of X, then v(S) is equicontinuous and
pointwise-bounded, hence by the Arzela-Ascoli theorem, v is compact. If for
some A € C and f # 0in X, vf = Af, then f(x) = Af'(z). So A # 0
and Inf(x) = % + ¢ for some ¢ € R. Hence f(z) = f(0)6§ = Oe% =0, a

contradiction. v has then no eigenvalue.



A week-operator closed subalgebra B of bounded operators on a
Hilbert space H such that B # B’, where B denotes the doubel

commutant of B.

KKKk koK sk ok sk ok sk sk skosk sk sk kokokokokskokok skok skoskoskk

Let H be a Hilbert space of dimension greater than 1, be a unit vector in
H and B be the subalgebra of B(H) consisting of those operators for which £
is an eigenvector. Let P be the projection with range [£] (If K C H, we denote
the closed linear span of K by [K]). Then T € B iff PTP = TP. B(H)
with weak-operator topology is Hausdorff and the mappings 7" — PT P and
T — TP are weak-operator continuous, hence B is weak-operator closed in
B(H).
Choose a unit vector n € H orthogonal to £&. Suppose that () is the projection
onto [{&,n}] and S is the operator defined by Sn =&, S =0and S(/—Q) =
0. Then P,Q and S are in B. Thus if 7" € B'( the commutant of B),
then £ and 7 are eigenvectors for 17", say 7'¢ = a& and T'n = (n. Since
T'S = ST', ¢ = Sy = ST'n =T'¢ = af and o = 5. But 7 is an arbitrary
element orthogonal to &; therefore 7" = al. Thus B’ = {al;a € C}. (Here

I denotes the identity operator on H.)



A unitary operator U acting on a Hilbert space whose spectrum is

C={z€C;lz| =1}.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

If H is a separable infinite dimensional Hilbert space with an orthogonal
basis (§,)nez, we define U, = &,11. Then U is isometric and surjective, so
it is a unitary operator. By Lemma 3.2.13 of [K&R1], sp(U) C C. If A € C
and 2, = (2n+1)7 En: A F&, then || &, [|[= 1 and || (U — Az, ||= (2n +

k=—n

3 n n 1
D7 | A0 - A E g = @n+ )T || A — AT, ||=
k=—n k=—n

1 —1
25 (2n+1)7 — 0.
Therefore by the same lemma, A € sp(U). Thus sp(U) = C.

Ref.
[K&R1] R.V. Kadison and J.R. Ringrose, Fundamental of the theory of
Operator Algebras (I), Acad. Press, 1983.



An unbounded symmetric operator on an inner product space.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Suppose that H is the subspace of [? consisting of all sequences ((,)
with ¢, = 0 for all sufficiently larg n. H is not complete ( Since (a,) where
a, = (1, %, cee %, 0,0, )nen is a Cauchy divergent sequence in H).

Let T denote the linear mapping (¢,) +— (n¢,) on H. T is symmetric, for
< T((Cn)), () >= in(nn_n =< (), T((n,)) > . T is unbounded since
if (&,) is the orthongr:nllal basis for [2, for each n,&, € H,|| &, ||= 1 and

| T&n [|= n.



Two selfadjoint operators 7" and S on a Hilbert space such that

sp(ST) is not a subset of R.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Consider
0 1 1 0
S — ,T =
10 0 —1
belonging to B(C?). Then S and T are Hermetian, but sp(ST) = {i, —i}

which is not a subset of R.



Two Hermetian operators 7" and S on a Hilbert space such that

S>0and —S<T < S but not |T|<S.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

20 ) (0)
S = = >0,T = .
2 2 0 V2 V2 V2 0 —1

(S and T belong to B(C?).)
Then

20 2 2 20 2 1
S—-T= v2 V2 V2 >0,S+T = >0
V2 1 0 1 10 00
2 2
and so —S < T < S, but S — |T| = ( ) and < (S — |T|)&, & >= -1
2 1

1
where & = ( ), hence S dosen’t majorize |T'|.
-1



A selfadjoint operator 7" # 0 on a Hilbert space such that 7T is

neither positive nor negative.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

_ 10 _ 1 0
Consider T' = belonging to B(C?), & = and n =
0 1 0 1

Then < T¢, € >= —1 and < Tp,n >= 1. Hence the selfadjoint operator 7' is

neither positive nor negative.



A bounded operator on a Hilbert space which has no square root.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Suppose that T is the operator T'(zy, o, - ) = (z2,x3,---) on [* ( in fact
T is the adjoint of the unilateral shift operator). If T" has a square root S,
then S? =T and KerS C KerT = C&; in which & = (1,0,0,--+). Since T is
not one to one we conclude that S is not one to one. So that KerS = C&;. T is
surjective, hence S is onto. So there exists an element 7 such that Sn = &;.
Since Tn = S?*n = S& = 0, we have n = A\ for some A € C and hence
& = Sn = AS& =0, a contradiction.

Comment. There is an open subset of L(H) consisting of invertible op-
erators with no square roots.

Ref.

J.B. Conway and B.B. Morrel, Roots and logarithms of bounded operators
on Hilbert spaces, J. Funct Anal, 70(1987), 171-193.



A bounded increasing sequence of self-adjoint operators on a Hilbert

space which is not uniformly convergent.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Assuming (&, )nen as an orthonormal basis for a separable infinite dimen-
sional Hilbert space H, say [?. Denote the linear span of {&;,&,--+,&,} by
Y,. Let P, be the projection onto the closed subspace Y,. If m < n, then
Y, CY,and so 0 < P, < P,. Moreover P, — P,, is a projection and so
| P, — P ||= 1 whenever n # m. Therefore (P,) is an increasing sequence
of self-adjoint operators which is not even a Cauchy sequence in uniform

topology on B(H).



Given a compact subset K of C, there exists a bounded operator 7T
on a Hilbert space such that sp(T) = K and the set of eigenvalues

of T is dense in K.

KKKk koK sk ok sk ok sk sk skosk sk sk kokokokokskokok skok skoskoskk

Suppose that H = [2, (e,) is the standard orthonormal basis for H and
(An) is a dense sequence in K. Set T(ianen) = i)\nanen where (a,) € [2.
Obviously K C sp(T). 1 X ¢ K, then inf{[A — jsp € K} > 0 and so

Zanen = Z (A=A )’lanen is a well-defined operator on H. S is the
1nverse of A\ — T Therefore A ¢ sp(T). Thus K = sp(T).

For every n, Te, = A\pe,. In fact {\1, Ao, --} is the set of all eigenvalues of

T that is dense in sp(T).



Operators of arbitrary large norms that are bounded by 1 on a

given basis of a separable infinite dimensional Hilbert space H.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Let (&,) be an orthonormal basis for H. For k € N, define Ty on H by
Tin=<n&+&+ -+ & > &. Then

& n<k
Tké‘n:
0 n>k

Hence || Tx&, ||< 1(n € N). On the other hand Tyn =< n,& > (& + -+ +
&) (n € H); therefore || T [|=|| Ty 21| Ti& =] & + -+ + & = VE.



Given a compact subset K of C such that K0 = I, there exists an
operator 7" acting on a Hilbert space H such that sp(7) =K and T

has no eigenvalue.

KKKk koK sk ok sk ok sk sk skosk sk sk kokokokokskokok skok skoskoskk

Let H = L?(K) in which K is equipped with the Lebesgue measure m
on R?. Define T on H as the following:

(Tf) () = pf(p); pe K, feH.

If A ¢ K, then sup{|\ — u|™';n € K} < oo and so we can define an operator
Son Hby (Sf)(n)=AN—p) ' f(n); f € Hype K. Hence S(T — \I) = (T —
AM)S =1Tsothat A ¢ sp(T). If A € K,(\[—T)"' € B(H) and f denotes the
characteristic function of {/; |A\—p| < €} multiplied by m({u; |A\—p| < €})71/2
, then

U= |1 f bl A =) Il AL =T)f s

= IO =T) 1| [ = @ (wdm(u) < AL =T) || ¢,

a contradiction. Hence (A — T') is not invertible. So A € sp(T'). It follows
that sp(T) = K. In addition, if Tf = af for some a € C, then for all
p € K, puf(p) = af(p). So f = 0 almost every where. Thus T has no

eigenvalue.



An operator T on a Hilbert space such that the set eig(7T) of all
eigenvalues of T is empty but sp(T) # 0.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

The unilateral shift operator on the Hilbert space [? ( with its standard
orthonormal basis (e,)) given by Te, = e,.1,n € N, has no eigenvalue;
since 0bv10usly 0 ¢ ezg(T) and if 0 7é A € eig(T) and Tx = Az for some
T = Zanen # 0, then ZanenH Z)\Oznen and hence «,, = 0 for all n, i.e.
T = 0 a contradiction. i

Next observe that 0 € sp(T'); otherwise T' would be invertible so T(T ' (e;)) =
e1 , but < T(T 'e;),e; >= 0 by the definition of T, that is impossible.



A Hilbert space H such that on B(H)

(i) the involution isn’t continuous with respect to the strong oper-
ator topology;

(ii) the weak operator topology and the strong operator topology
are different;

(iii) the operator norm is not continuous with respect to the strong
operator topology and the weak operator topology:;

(iv) the weak operator topology and the strong operator topology
aren’t metrizable;

(v) the operation multiplication is continuous in neither weak nor

strong operator topology.

stk st st sk ook ok sk ok sk st sk ok skook ok ok sk ok ok skok ok

Let H = [? and (e,) be the standard orthonormal basis for H ( note that
forall z € H,x = i <z e, >ey,). Set T, = 1®e,,. Then TF = e,Re;
(i) lim, || Tho ||= 711;111“ < z,e, > e ||=lim, | <z,e, >|=0. SoT, — 0
in the strong operator topology. But lim, || Tfe; ||= lim, || e, ||= 1, hence
T dosen’t converge to zero in the strong operator topology. So T' — T™ is
not continuous in the strong operator topology.
(ii) The involution is continuous with respect to the weak operator topology
(since | < Tx,y > | = | < T*y,x > |). Hence (i) implies that the weak
operator topology and the strong operator topology don’t coincide on B(H).
(iii) || T [|=]| e ||l| en ||= 1, and by (i) 7,, — 0 in the strong operator
topology. Therefore the operator norm is not continuous on B(H).

(iv) Let A = {n2T,;n € N'}. For each neighborhood U(0,zy,- - -, Zpm, €) of 0



o
in the strong operator topology, with 2, = Y _aje,, || n=T,ay, |= n? lag|.

n=1

o.¢]

But forevery 1 < k < m, ) _|aj|* < oo, hence for each € there exists a natural
n=1

number n such that n?|a?| < e. So that 0 belongs to the strong closure of

A. Tt follows from the principle of uniform boundedness and || \/nT, ||= /0
that any sequence in A doesn’t converge to 0 in the strong operator topology.
Hence the strong operator is not metrizable. Similarly one can show that the
weak operator topology is not metrizable.

(v) Let A be the set of all (n,U) in which n € N and U is a neighborhood
of 0 in the strong operator topology on B(H). Then A with the following

relation is a directed set:
(m,U) < (m',U") < (m <m'and U D U’)

oo
Suppose that S is the unilateral shift operator on (e,), i.e. S(D arer) =
k=1

Zakek-i-l-

k=1

Obviously S*(Zakek) = Zak+lek. If A\ = (my,Uy) € A lim, || S"'z ||=
k=1 k—1

my limn(§:|ak+n|2)% — 0 whenever z = iakek € H. Therefore (myS™ )pen
convergelscztlo 0 in the strong operator toplz):l(l)gy. So that there exists a pos-
itive integer number ny such that m,S™ € U,. Set T\ = m,S™ and
Ry = mLAS"A. Then lim, || Ry ||= lim, % = 0, so that Ry converges to 0 in
the norm topology.

If U be a strong neighborhood of 0 and Ay = (1,U), then T), € U,, and for
every A > Ao, Ty € Uy C U,,. therefore (T)) e converges to 0 in the strong

operator topology. But T\R), = 1 for all A\, hence if the multiplication is



jointly continuous in either the weak or the strong operator topology, then

1 =limy T\ Ry = lim, T limy R, = 0, a contradiction.

Comment. The statements are true on any infinite dimensional Hilbert
space.

Ref.

[Mur] G.J. Murphy, C*-algebras and operator theory, Academic Press, 1990.



A sequence of nilpotent operators on H which converges with re-
spect to the norm topology on B(H) to an operator which is not
topologically nilpotent.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

This example is due to Kakutani (cf. [Ric, p. 282]). Let H be a separable
Hilbert space with orthonormal basis (fn)mer. Define a,, = e7* for m =
2k(214+1), k,1 =0,1,--- and also the operator T by T'f,, = tp frns1, m € N.
Then || T ||= sup,en |om|, T" frn = Q@1 - - - Cepn—1 fnn and so || T™ ||=

Supme/\[(amaerl e Oém+n71)-

Moreover, by the definition of the «,, we have ajag - - - e 1 = Hexp j2t=i=h,

1 t—1 o]

Therefore (ajag---age_1) 2 Hexp 5 +1 )? and if o = 2%, then
j:

1
e™27 < lim, || T" ||70. So T is not topologically nilpotent.

Next define the operator T} by

0 m=282+1),l=0,1,-
kam:

oYy — otherwise

Then T}, is nilpotent. But

e fyr m=2F20+1),1=0,1,---
0 otherwise

Thus || T, — T ||= €%, hence lim, T}, = T in the norm topology on B(H).
Ref.

[Ric] C.E. Rickart, General theory of Banach algebras, Princeton, Van Nas-
trand, 1960.



(a) A Banach space X and an operator 7 € B(X) having no non-
trivial invariant subspace.
(b) A Banach space X and an operator 7' € B(X) having a nontrivial

invariant subspace.

stk st st sk st ok ok sk ok sk st sk ok sk ok ok ok sk ok ok skok ok

(a) C.J. Read showed that if X = [' then there exists a bounded operator
on [! having no nontrivial invariant subspace.

(cf. [C.J. Read, A solution to the invariant subspace problem, Bull. Lon-
don Math. Soc., 16(1984), 337-401.]

(b) If X =C"(n > 1),T € B(C™) —CI is an arbitrary operator and o € C
is an eigenvalue of T', then M = Ker(T — al) is a nontrivial subspace of X

and TM C M.( I is the identity operator on C™)



(a) An injective operator on a Hilbert space H such that the range
of T, R(T), isn’t dense in H.
(b) An operator S such that S is surjective but Ker(S) # {0}.

KKKk koK sk ok sk ok sk sk skosk sk sk kokokokokskokok skok skoskoskk

Let H be a separable Hilbert space with the standard orthonormal basis
(€n)-
(a) The unilateral shift operator T'(ay, ag, - - -) = (0, ay, ag, - - -) on H is injec-
tive and the closure of its range is the closed linear span {es, €3, -} which

doesn’t contain e;.

(b) If S = T*, then S(ay,ag, ) = (a9, as3,--+). So S is surjective but
Ker(S) # {0}, since it is the linear span of e;.



Two positive operators 7' < S acting on a Hilbert sace such that S?

does not majorize T2

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Define T" and S as operators on C? by T'(z1, 22) = (21,0) and S(z1, 22) =
(221 + 29,21 + Zg).

Then
10 2 1 RESVES
a@=s(| " "=y cr T = 1) = sl 2 L | = (25 e,
0 0 11 2
1 1 ]
S*=S,sp(S—T) = sp( ) ={0,2} C RO,
1 1
(43
Hence 0 < T < S. But sp(S? — T?) = sp( ]) = {3+/10} is not a
3 2

subset of R, Therefore S? doesn’t majorize T2.



An unbounded operator on a Hilbert space H annihilating an or-

thonormal basis of H.

ARk KRRk R ok
Let (e,) be the standard orthonormal basis for the Hilbert space H = [2.

Extend (e,) to a Hamel basis 3 for [2. Choose f € 3 distinct to the e, and

define then the linear mapping T': H — H by

Lg=f
T(g) =
0 gep\{f}
Then T'(e,) = 0 and T is unbounded ( otherwise, 1 =T'(f) = >_ < f,e, >
n=1

Te, =0).



An operator U on a Hilbert space, other than I, such that sp(U) =
{1} and || U ||= 1.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Suppose that H = L?(0,1) with respect to the Lebesgue measure and
(Tf)(z) =[5 f(t)dt. Tt follows from BA15.DVI, sp(T) = 0, so that sp(I +
T) = {1}. Hence U = (I + T)~' # I is well-defined, moreover sp(U) =
{AN"5 X e sp(I+T)} ={1}. Therefore

L=r(U) <[ U].
But || U ||< 1, since
U=l T+ DENl=lf I+ < (T+T)&E>+ [ TP f 17

(Note that T'+ T* is a projection onto the space of constant functions, since

(T*F)(t) = J;" f(t)dt.)
Thus || U ||= 1.



A unital commutative Banach algebra with a maximal ideal M of
codimension 1 and a Banach A-module X such that H*(A4,X) =0
but H?*(M, X) # 0.

KKKk koK sk ok sk ok sk sk skosk sk sk kokokokokskokok skok skoskoskk

Let A = C? with the product (a,b)(a’, V') = (ad’,ab’ +a'b). M = {0} ®C,
being the kernel of the character ¢ : A — C defined by ¢(z,w) = z, is a
maximal ideal of codimension 1. Regard X = C as an annihilator A-module.
By [B&D&L, Proposition 2.2],

H*(A, X) = {0}. If u((0,wy), (0,ws)) = wyws, then p € Z*(M,X), but
p & N?(M, X) (otherwise wyws = pu((0,w), (0,ws)) = (6'N)((0,w), (0,ws)) =
(0, w1).A((0, w2)) = A((0, wr).(0, wz)) + A0, w1).(0,w2) = 0 = A(0) +0 = 0,
for all wq,ws € C, a contradiction).

Thus H?(M, X) # 0.

Ref.
[B&D&L] W.G. Bode, H.G. Dales and Z. Lykova, Algebraic and strany
splittings of extensions of Banach algebras, mem. Amer. Math. Soc. 137

(1999).



A non-split short complex of Banach spaces whose dual splits.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

: [
0 —cy — [° 5 lC—O—>O is a short exact complex of Banach spaces
which doesn’t split since ¢q is not complemented in [*°.
00 # # )
Its dual complex 0 —» (lc—o)# I (1°)# = (IY## 25 ¢ = 1'—0 splits.

Notice that the later complex is exact and the canonical embedding I! —

(IM## is a right inverse to i*.



A weakly amenable commutative Banach algebra which is not

amenable.

skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

P,1 < p < oo, is closed linear span of its idempotents ,(k) = S, n, k €
N. Suppose that e is an idempotent of [?, X is a symmetric Banach [P-module
,and D : A — X is a continuous derivation. Then De = D(e?) = 2eD(e)
and so De = (De — 2eDe) — 2e(De — 2eDe) = 0. It follows that D = 0. So
that [? is weakly amenable. But [P, 1 < p < oo has no bounded approximate
identity ( see ba4l.dvi in the case p = 2 ), so that A is not amenable (cf. [
B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc.
127 (1972))).



A derivation on an algebra which is not inner.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Suppose that A is an algebra with unit 1 and a is an element of A which
is not algebraic (i.e. {1,a,a?, -} isn’t a linearly independent set). Let B be
the subalgebra of A generated by 1 and a. Define a mapping D of B into B
by D(Xo+ A1a+ -+ A\pa™) = A\ + 2X0a + - - - + nA,a""'. Obviously D is a

derivation on B and isn’t inner, since B is commutative and D # 0.



A closed unbounded x-derivation on a C'*-algebra A.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Suppose that A = C([0,1]) and 6(f) = (£)f(t) = f'(t) with the do-
main D(§) = C'([0,1]) where C'(]0,1]) is the algebra of all continuously
differentiable functions on [0,1]. || 6(z™) ||[= n = n || 2™ || implies that o
is an unbounded derivation from D(¢) into A. If f, € D(0),f, — f €
A, and §(f,) — g, then f/ — ¢ uniformly on [0,1] and f,(0) — £(0).

So g is differentiable and f' = g. Therefore f € D(d) and §(f) = g.



A Banach algebra for which every linear operator is a derivation.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Suppose that A is an arbitrary Banach space. Defining z.y = 0(x,y €

E), E is a Banach algebra. Obviously every linear operator is a derivation.



A non-closable unbounded *-derivation.

Skeskoskokokosk skokokosk skokok skokokosk sk kokoskok ok skokokokoskok

Let X be the Cantor set of [0,1]. It is well-known that X is a perfect
compact subset of [0,1]. By Tietze’s theorem, C'(X) = {f|x; f € C([0,1])}.
Define § on D(8) = {f|x; f € C'([0,1])} by 6(f|x) = f'|x.  is a well-defined

derivation (if f|x = 0, then for each zy € X there exists a sequence {x,} in

f@n) = flz0)

N = 0, therefore

X — {zo} converging to xy. So f'(xy) = lim,
f'lx =0).

But ¢ is not identically zero so by [Sak2, Proposition 3.2.1]  cannot be
extended to a closed derivation in C'(X). So that ¢ isn’t closable.

This example is due to O.Bratteli and D.W. Robinson ([cf. Sak2, P.59]).
Ref.

[Sak2] S. Sakai, Operator algebras in dynamical systems, Cambridge Univ.

Press, 1991.
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