- (a) A unital Banach algebra, except the algebra of complex numbers, without nontrivial idempotent. - (b) A unital Banach algebra with a nontrivial idempotent. (Recall that 0 and 1 are called trivial idempotents.) ********** We show that the Banach algebra C(X) has no nontrivial idempotent iff X is connected: Let $0 \neq f \neq 1$ be an idempotent. Then $X = f^{-1}(\{0\}) \cup f^{-1}(\{1\})$ implies that X is not connected. Conversely if X is disconnected and $X = G_1 \cup G_2$ with open disjoint sets G_1 and G_2 , then $f(x) = \begin{cases} 1 & x \in G_1 \\ 0 & x \in G_2 \end{cases}$ is a trivial idempotent of C(X). **Comment.** If A is a (not necessarily commutative) Banach algebra with an element $a \in A$ such that sp(a) is not connected, then A has a nontrivial idempotent. (cf. [B&D, Remarks of Prop. 7.9]) ### Ref. [B&D] F.F. Bonsall, J. Duncan, complet normed algebras, Springer-Verlag, 1973. A Banach algebra generated by idempotents i.e. elements x such that $x^2 = x$. ********** In the following, we show that the Banach algebra C(X), where X is a compact Hausdorff space, with Card(X) > 1, is generated by idempotents iff X is totally disconnected. Recall that a topological space is said to be totally disconnected if for every distinct $x_1, x_2 \in X$, there exist disjoint open sets G_1 and G_2 such that $x_1 \in G_1, x_2 \in G_2$ and $X = G_1 \cup G_2$. If X is totally disconnected, $x_1 \neq x_2, x_1 \in G_1, x_2 \in G_2, X = G_1 \cup G_2, G_1 \cap G_2 = \emptyset, G_1$ and G_2 are open, then the continuous function $f(x) = \begin{cases} 1 & x \in G_1 \\ 0 & x \in G_2 \end{cases}$ separates x_1 and x_2 . So the closed self-adjoint subalgebra generated by idempotent, by the Stone-Weierstrass theorem, is C(X). Conversely, suppose that C(X) is generated by its idempotents. Let x_1 and x_2 belong to X. By Urysohn's lemma there exists a function $f \in C(X)$ such that $f(x_1) = 1$ and $f(x_2) = 0$. Every element of the self-adjoint subalgebra generated by idempotents is of the form $h = \sum_{i=1}^k \lambda_i g_i(\clubsuit)$ for some idempotents g_i and $\lambda_i \in \mathcal{C}$. Hence there is a sequence (h_n) of elements of the form (\clubsuit) such that $h_n \longrightarrow f$ uniformly on X. So $h_n(x_1) \longrightarrow 1$ and $h_n(x_2) \longrightarrow 0$. Therefore there exists a number N such that $|h_N(x_1)| > \frac{1}{2}$ and $|h_N(x_2)| < \frac{1}{2}$. So that $x_1 \in h_N^{-1}(\{z \in \mathcal{C}; |z| > 1\}) = G_1, x_2 \in h_N^{-1}(\{z \in \mathcal{C}; |z| < 1\}) = G_2, X = G_1 \cup G_2, X = G_1 \cap G_2 = \emptyset$. Thus X is totally disconnected. A compact Hausdorff space X and subalgebras of C(X) satisfying in only three conditions of four following conditions: - (a) uniformly closed, - (b) separating the points of X, - (c) containing constant functions, - (d) closed under complex conjugation. - (a), (b), (c); i.e. a uniform algebra: Consider a compact subset X of \mathcal{C} and suppose that A is the uniform closure of rational functions with poles out of X. (a), (b), (d): With X = [a, b], let A be the set of all polynomials in one variable, but without constant terms. (b), (c), (d): With X = [a, b], put A to be the algebra of all polynomials in one variable. (a), (c), (d): Let X = [a, b], x_1 and x_2 are in X and $A = \{f \in C(X); f(x_1) = f(x_2)\}$. A Banach algebra A such that Rad(A) is a proper subset of the set $\{x; r(x) = 0\}$ of all quasi-nilpotent elements. ********** 1.Suppose that H be a Hilbert space with $dimH \geq 2$. Let $x, y \in H - \{0\}$ and $\langle x, y \rangle = 0$. The norm of rank one operator $(x \overline{\otimes} y)(z) = \langle z, y \rangle x$ is $||x||||y|| \neq 0$. So $x \overline{\otimes} y \neq 0$. Also $(x \overline{\otimes} y)^2(z) = (x \overline{\otimes} y)(\langle z, y \rangle x) = \langle z, y \rangle \langle x, y \rangle x = 0$ so $(x \overline{\otimes} y)^2 = 0$. Hence it is quasi-nilpotent. But B(H) is semi-simple. Therefore $x \overline{\otimes} y \notin Rad(B(H)) = \{0\}$. 2.Let $A=M_2(\mathcal{C})\simeq B(\mathcal{C}^2)$. A is a C^* -algebra so $Rad(A)=\{0\}$. The element $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ has the spectrum $\{0\}$ and so $r(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix})=0$. Hence Rad(A) is not equal to $\{x; r(x)=0\}$. ## An algebrically semisimple non-commutative Banach algebra. *********** We show that B(X), the algebra of bounded linear mappings from normed space X into X is semi-simple: Suppose that $x_0 \neq 0$ is fixed in X. Then $I_{x_0} = \{T \in B(X); Tx_0 = 0\}$ is a left ideal in B(X). We shall show that it is maximal. Let J be a left ideal properly containing I_{x_0} . Then $Jx_0 = \{Tx_0; T \in J\}$ is a nonzero linear subspace of X which is invariant under each $S \in B(X)$. If $Jx_0 \neq X$, then there exists a nonzero $y \in Jx_0$ and an element $z \in X$ such that $z \notin Jx_0$. If $S \in B(X)$ such that Sy = z, then $z \in Jx_0$ for Jx_0 is invariant under all elements of B(X). Thus $Jx_0 = X$. So that there exists $U \in J$ such that $Ux_0 = x_0$. For each $T \in B(X)$, $TU - UT \in I_{x_0}$. Hence $T \in J + I_{x_0} \subseteq J$. Therefore B(X) = J. Thus $Rad(B(X)) \subseteq \bigcap_{0 \neq x \in X} I_x = \{0\}$. Therefore B(X) is algebrically semisimple. A semisimple commutative Banach algebra with a closed two-sided ideal I such that $\frac{A}{I}$ isn't semisimple. ********** Suppose that A is the algebra $C^m([0,1])$ of all m times continously differentiable complex-valued functions on [0,1] with the norm $\|f\| = \sum_{k=0}^m \frac{1}{k!} \sup_{x \in [0,1]} |f^{(k)}(x)|$. Let $I = \{f \in A; f(0) = f'(0) = 0\}$. Then $\frac{A}{I}$ is not semisimple, since assuming f_\circ to be $f_\circ(x) = x$, then $f_\circ^2 \in I$ and so $(f_\circ + I)^2 = f_\circ^2 + I = 0$, hence $f_\circ(x) = \lim_n \|f_\circ(x)\|^{\frac{1}{n}} = 0$. Therefore $f_\circ(x) = \lim_n \|f_\circ(x)\|^{\frac{1}{n}} = 0$. So that $f_\circ(x) = \lim_n \|f_\circ(x)\|^{\frac{1}{n}} = 0$. A non-maximal primary ideal in a unital commutative Banach algebra A. ********** Suppose that A is the algebra $C^m([0,1])$ of the complex valued m times continously differentiable functions on [0,1] with the norm $||f|| = \sum_{k=0}^{m} \frac{1}{k!} \sup_{x \in [0,1]} |f^{(k)}(x)|$. Let $x_0 \in [0,1]$ and $I = \{f \in A; f(x_0) = f'(x_0) = 0\}$. Then I is a closed two-sided ideal contained in only one maximal ideal; i.e. $\{f \in A : f(x_0) = 0\}$. Note that the maximal ideals of A are of the form $I_x = \{f \in A; f(x) = 0\}$, $x \in [0,1]$. A conclusion is that $C^m([0,1])$ is not spectral synthesis, i.e. it has a closed two-sided ideal which is not the intersection of maximal ideals containing this ideal. **Comment.** The disk algebra contains a nonmaximal prime ideal, namely $\{0\}$. ## An (algebrically) simple Banach algebra. ********** In the case commutative, consider the familiar Banach algebra \mathcal{C} . In the non-commutative case, consider the algebra $M_n(\mathcal{C})$ of all $n \times n$ matrices with entries in \mathcal{C} . Identifying $M_n(\mathcal{C})$ with $B(\mathcal{C}^n) = K(\mathcal{C}^n)$ we may regard $M_n(\mathcal{C})$ as a noncommutative C^* -algebra. Suppose that I_{ij} is the matrix with the ij-entry 1 and 0 elswhere. Then $I_{ij}I_{\alpha\beta}=\delta_{j\alpha}I_{i\beta}$, where δ denotes Kronecker's δ . Let Δ be a nontrivial two-sided ideal in $M_n(\mathcal{C})$. There is a nonzero element $A=\sum_{i,j=1}^n a_{ij}I_{ij}$ in Δ , hence $a_{rs}\neq 0$ for some $1\leq r,s\leq n$. But $I_{rs}AI_{sr}=(\sum_{j=1}^n a_{rj}I_{rj})I_{sr}=a_{rs}I_{rr}\in\Delta$. Hence $I_{ij}=I_{is}I_{sr}I_{rj}\in\Delta$ for all $1\leq i,j\leq n$. Therefore $\Delta=M_n(\mathcal{C})$, a contradiction. A Banach algebra A, a closed subalgebra B of A and an element $a \in A$ such that sp(A, a) = sp(B, a). ********* Let H be a Hilbert space, A = B(H), a = T be a nonzero element of A and also let B be a maximal commutative subalgebra containing T, then by Theorem 15.4 of [B&D, §15. Theorem 4], $$sp(A, a) = sp(B, a).$$ Ref. [**B&D**] F.F. Bonsall, J. Duncan, Complete normed algebras, Springer-Verlag, 1973. - (a) A reflexive Banach algebra. - (b) A non-reflexive Banach algebra. ********* - (a) \mathcal{C}^n is reflexive. Note that $(\mathcal{C}^n)^{\#\#} = (\mathcal{C}^n)^{\#} = \mathcal{C}^n$ $(n \geq 1)$. - (b) $c_0^{\#\#} = (l^1)^{\#} = l^{\infty}$ and the inclusion $c_0 \longrightarrow l^{\infty}$ is proper. Hence c_0 is not reflexive. ## An element of a Banach algebra which has no logarithm. *********** Consider the unilateral shift operator u on a separable Hilbert space H, then u is Fredholm of index $\operatorname{nul} u - \operatorname{def} u = 0 - 1 = -1$. If $\pi: B(H) \longrightarrow \frac{B(H)}{K(H)}$ is the quotient map and $\pi(u) = e^w$ for some w in the Calkin algebra $\frac{B(H)}{K(H)}$, then there exists an element $w' \in B(H)$ with $\pi(w') = w$, so $\pi(u) = e^w = e^{\pi(w')} = \pi(e^{w'})$. Hence $u - e^{w'} \in K(H)$. But $e^{w'}$ is invertible and so $\operatorname{ind} u = \operatorname{ind}(e^{w'}) = 0$, a contradiction. ## An algebra can not be normed so that it becomes a Banach algebra. ********* $A = C^{\infty}([0,1])$, the algebra of all complex valued infinitely many times continuously differentiable functions on [0,1] is semisimple, for $Rad(A) = \bigcap_{t \in [0,1]} \{ f \in C^{\infty}([0,1]); f(t) = 0 \} = 0$. $f \mapsto f'$ is a derivation on A. The Johnson theorem says that 0 is the only derivation on a semisimple Banach algebra (cf. [B&D], Theorem 18.21]). It follows that $A = C^{\infty}([0,1])$ is not a Banach algebra under any norm. For a proof based on the Singer-Wermer theorem see [Sak2, Corollary 2.2.4]). In addition a direct proof can be found in [Aup, Corollary 4.1.12]. This example is due to Šilov([sil]). ### Ref. [Aup] B. Aupetit, A primer on spectral theory,
Springer-Verlag, 1991. [**B&D**] F.F. Bonsall, J.Duncan, complet normed algebras, Springer-Verlag, 1973. [Sil] G.E. Silov, On a property of rings of functions, DoKl. AKad. Nauk. SSSR, 58(1974),985-8. # A commutative radical Banach algebra. ********** 1. A Banach space with all products taken to be zero. Then every element is quasi invertible. 2. The Banach space $L^1([0,1])$ with the product $(fg)(x) = \int_0^x f(x-y)g(y)dy$ has $f_{\circ}(t) = t, 0 \le t \le 1$ as a generator since $f_{\circ}^n(t) = \frac{t^{n-1}}{(n-1)!}$, the set of polynomials in one variable is L^p -dense in C([0,1]) and C([0,1]) is L^p -dense in $L^1([0,1])$ (cf. [Rud2, Theorem 2.14]). Moreover $||f_{\circ}^{n}|| = \int_{0}^{1} |f_{\circ}^{n}(t)| dt = \frac{1}{n!}$, so $r(f_{\circ}) = \lim_{n} ||f_{\circ}^{n}|| \frac{1}{n!} = \lim_{n} (n!) \frac{-1}{n!} = 0$. Therefore this algebra doesn't have any character. Thus it is radical al- gebra. Ref. [Rud2] W. Rudin, Real and complex analysis, McGraw-Hill, 1986. An element x of a Banach algebra such $r(x) < \parallel x \parallel$. ********* Consider $x=\begin{bmatrix}0&1\\0&0\end{bmatrix}$ in the C^* -algebra $M_2(\mathcal{C})\simeq B(\mathcal{C}^2)$. Then $sp(x)=\{0\}$. So r(x)=0. But $\parallel x\parallel=1$ (since its associated operator $T(z_1,z_2)=(z_2,0)$ has norm 1). ## A commutative Banach algebra A with a unique ideal; i.e. Rad(A). ********** Suppose that $H = L^2(0,1)$ with respect to the Lebesgue measure. Then $(Vf)(x) = \int_0^x f(t)dt$ defines an operator $V \in B(H)$ which is called Volterra operator. Clearly the closure A of $\{p(V); p \text{ is a polynomial in } z\}$ in B(H) is the commutative Banach subalgebra of B(H) generated by V and the identity operator I. An straightforward computation shows that $(V^n f)(x) = \int_0^x \frac{(x-t)^{n-1}}{(n-1)!} f(t) dt$ and so $||V^n|| \le \frac{1}{(n-1)!}$ and $r(V) = \lim_n ||V^n||^{\frac{1}{n}} = 0$. Hence $sp(B(H), V) = \{0\}$. But by [Con, VII.Theorem 5.4], sp(A,V) is equal to the polynomially convex hull of sp(B(H), V), hence $sp(A, V) = \{0\}$. But the maximal ideal space of A is homeomorphic to $sp(A, V) = \{0\}$. So the only character on A is $\phi(\lambda) = \lambda$ and $\phi(x) = 0$ for $x \in A - \mathcal{C}$. Since ϕ is continuous, the unique maximal ideal space is $Rad(A) = Ker(\phi) =$ the closure of $\{p(V); p \text{ is a polynomial in } z \text{ and } p(0) = 0\}$. # Ref. [Con]J.B. Conway, A course in functional analysis, New York, Springer-Verlag, 1990. A Banach algebra A that is a topological direct sum (as a Banach space) of a pair of its Banach subalgebras which are isometrically isomorphic to A. ********* Consider $A = l^{\infty}$. Define $E = \{(x_n) \in l^{\infty} ; x_{2n} = 0\}$ and $F = \{(x_n) \in l^{\infty} ; x_{2n-1} = 0\}$. Obviously E and F are closed subalgebras of l^{∞} . Moreover A = E + F and $E \cap F = \{0\}$. So E is a complemented subspace of A with F as a complementary subspace. In addition, $\varphi((x_1, x_2, x_3, \ldots)) = (0, x_1, 0, x_2, 0, x_3, \ldots)$ is an isometrically isomorphism between l^{∞} and E. One can similarly define an isomorphism between l^{∞} and F. Note that if E is a complemented infinite dimensional subspace of l^{∞} then E is isomorphic to l^{∞} . (cf. [J. Lindenstranss, On complemented subspaces of m. Israel J. Math., 5, 1967, 153-156]) ## A Banach algebra with a proper dense two-sided ideal. *********** 1. $C_c(\mathcal{R}) = \{ f \in C_0(\mathcal{R}); \text{ supp}(f) = \text{ the closure of } \{ x \in \mathcal{R}; f(x) \neq 0 \} \text{ is compact } \}$ is a dense ideal of $C_0(\mathcal{R})$. Note that the function f defined by $$f(x) = \begin{cases} \frac{1}{1+x} & x \ge 0\\ \frac{1}{1-x} & x < 0 \end{cases}$$ belongs to $C_0(\mathcal{R}) - C_c(\mathcal{R})$. 2. $A = \{f \in C([0,1]); f(0) = 0\}$ is a closed subalgebra of C([0,1]) not containing the constant function 1. So A is a non-unital Banach algebra. Let $f_{\circ}(t) = t$, $t \in [0,1]$. $I = \{f_{\circ}g; g \in C[0,1]\}$ is a proper ideal of A (since if $$h(t) = \begin{cases} t \sin\frac{1}{t} & t \in (0, 1] \\ 0 & t = 0 \end{cases}$$ and for some $g \in C[0,1]$, tg(t) = h(t) whenever $t \in [0,1]$ then $\lim_{t\to 0} \sin\frac{1}{t} = g(0)$, a contradiction). By the Stone-Weierstrass theorem, each $f \in A$ is the uniform limit of a sequence (p_n) of polynomials with $p_n(0) = 0$. Moreover $t \longmapsto \frac{p_n(t)}{t}$ belongs to C[0,1] and $t\frac{p_n(t)}{t} \longrightarrow f(t)$ uniformly on [0,1]. So f belongs to the closure of I. Hence I is dense in A. A Banach algebra A in which every singular element is a left or right topological divisor of zero. ********** Let A = B(X), the Banach algebra of bounded linear mappings from a Banach space X into X, and $T \in Sing(A)$. For $y \in X$ and $g \in X$, the rank one operator $y \overline{\otimes} g \in B(X)$ is defined by $(y \overline{\otimes} g)(z) = g(z)y$ $(z \in X)$. If T isn't 1-1, then there exists an element $x \neq 0$ such that Tx = 0. So if $f \in X^{\#}$ and f(x) = 1, then $T(x \overline{\otimes} f) = Tx \overline{\otimes} f = 0$. So T is a left divisor of zero. If $T(X) \neq X$ and $T(X)^- \neq X$, then by the Hahn-Banach theorem there exists a non-zero functional f such that f(T(X)) = 0. Therefore $(x \overline{\otimes} f)T = 0$, for all $x \in X$. Thus T is a right divisor of zero. Finally if $T(X) \neq X$ and $T(X)^- = X$, then there exists a sequence (y_n) in X satisfying $||y_n|| = 1$ and $Ty_n \longrightarrow 0$. If $f \in X^\#$ with ||f|| = 1 and $U_n = y_n \overline{\otimes} f$, then $||U_n|| = ||y_n|| \ ||f|| = 1$ and $||TU_n|| = ||Ty_n \overline{\otimes} f|| \leq ||Ty_n||$ and hence $TU_n \longrightarrow 0$. Thus T is a right topological divisor of zero. Two element a,b of a Banach algebra such that neither $r(ab) \le r(a)r(b)$ nor $r(a+b) \le r(a)r(b)$. ********* Consider $a=\begin{bmatrix}0&1\\0&0\end{bmatrix}$ and $b=\begin{bmatrix}0&0\\1&0\end{bmatrix}$ in $M_2(\mathcal{C})\simeq B(\mathcal{C}^2)$. Then $sp(a)=\{0\}, sp(b)=\{0\}, sp(a+b)=\{-1,1\}, sp(ab)=\{0,1\}$ and we have required inequalities. A normed algebra with non-open group of invertibles (and so the algebra is not Banach). ********** Let $A = \mathcal{C}[z]^1$, then $Inv(\mathcal{C}[z]) = \mathcal{C} - \{0\}$, hence the elements $p_n(z) = 1 + \frac{z}{n}(n \in \mathcal{N})$ aren't invertible. But $\lim_n p_n(z) = 1 \in Inv(\mathcal{C}[z])$. Therefore A - Inv(A) isn't closed. ¹The set C[z] of all polynomials in an indeterminate z with complex coefficients under usual operations on polynomials and with the norm $||p|| = \sup_{|\lambda| \le 1} |p(\lambda)|$ is a normed algebra. A commutative Banach algebra whose unit ball isn't norm compact. *********** The unit ball of C([0,1]) is not compact with respect to the supremum norm, since if $p_n(x) = x^n$, then $||p_n|| = 1$ and (p_n) has no convergent subsequence. It's well-known that a normed space Y is finite dimensional iff $\{y \in Y; ||y|| \le 1\}$ is compact (cf. [Ker, Theorem 2.5-5]). C([0,1]) is infinite dimensional, hence its unit ball is not compact. ## Ref. [Ker] E. Kreyszig, Introductory functional analysis with applications, John Wiley & Sons, 1978. # A normed algebra A whose radical is isomorphic to C. ********** Suppose that $A = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}; a, b, c \in \mathcal{C} \right\}$. Then A is a subalgebra of $M_2(\mathcal{C}) \simeq B(\mathcal{C}^2)$ and the only its characters are $f(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = a$ and $g(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = c$, since $$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad , \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad , \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$ is a basis for A. Therefore $Rad(A)=\{\begin{pmatrix}0&b\\0&0\end{pmatrix};b\in\mathcal{C}\}$ is isometrically isomorphic to \mathcal{C} . - (a) A separable Banach algebra. - (b) A non-separable Banach algebra. ********** - (a) $\{r_1 + ir_2; r_1, r_2 \in \mathcal{Q}\}$ is a countable dense subset of \mathcal{C} . Hence \mathcal{C} is a separable Banach algebra. - (b) l^{∞} isn't separable. In fact if $S = \{a_1, a_2, \cdots, \}$ is a countable set in $l^{\infty}, a_n = (a_n^k)_{k \in \mathcal{N}}$, and $b_n = \begin{cases} 0 & |a_n^n| \geq 1 \\ 2 & |a_n^n| < 1 \end{cases}$, then $b = (b_n) \in l^{\infty}$ and for all $n, \parallel b a_n \parallel_{\infty} \geq |b_n a_n^n| \geq 1$. So that the neighborhood of b with the radius 1 doesn't intersect S. Thus S isn't dense in l^{∞} . For another proof see [A&B, Problem 25.7]. ### Ref. [A&B] C.D. Aliprantis and O. Burkinshaw, Problems in real analysis, Acad. Press, 1990. Two non-isomorphic Banach algebras with homeomorphically isomorphic invertible groups. ********** 1. Let $A_1 = C([-1, \frac{-1}{2}] \cup [\frac{1}{2}, 1])$ and $A_2 = C([0, 1] \cup \{2\})$. Since $[0, 1] \cup \{2\}$ isn't homeomorphic to $[-1, \frac{-1}{2}] \cup [\frac{1}{2}, 1]$, A_1 isn't isomorphic to A_2 . Also the function which sends $x \in Inv(A_1)$ to $y \in G_2$ defined by $$y(t) = \begin{cases} x(t-1) & t \in [0, \frac{1}{2}] \\ \left[x(\frac{-1}{2})/x(\frac{1}{2}) \right] x(t) & t \in [\frac{1}{2}, 1] \\ x(\frac{1}{2})/x(\frac{-1}{2}) & t = 2 \end{cases}$$ is the desired isomorphism. ## Ref. [Zel] W. Zelazko, Banach algebras, Elsevier Publishing Company, 1973. A commutative Banach algebra whose unit ball has no extreme point (and so it isn't the dual space of any Banach space by the Krein-Milman theorem (cf. [Con, Theorem 7.4])). ********** The unit ball of c_0 has no extreme point. For see this, let (x_n) belongs to the ball of c_0 . $\lim_n x_n = 0$, so there exists a number N such that for all n > N, $|x_n| < \frac{1}{2}$. Let $y_n = z_n = x_n$ for $n \le N$, and let $y_n = x_n + 2^{-n}$ and $z_n = x_n - 2^{-n}$ for n > N, then (y_n) and (z_n) belong to
the unit ball of c_0 and $(x_n) = \frac{1}{2}(y_n) + \frac{1}{2}(z_n)$. So (x_n) isn't is not an extreme point. # Ref. [Con]J.B. Conway, A course in functional analysis, New York, Springer-Verlag, 1990. - (i) A singly generated Banach algebra - (ii) A Banach algebra can not be singly generated *********** - (i) $C_{\circ}((0,1])$ is singly generated by the inclusion function $t \mapsto t$, by the Stone-Weierstrass theorem. - (ii) $C(\Gamma)$, where Γ is the unit circle in plane. # A Banach algebra without any topological divisor of zero. ********** Clearly \mathcal{C} has no topological divisor of zero. In fact \mathcal{C} is the only Banach algebra with this property. (cf. [W. Zelazco, On generalized topological divisors of zero in real m-convex algebras, (1967) 241-244.]). ## A commutative Banach algebra A without any minimal ideals. *********** Let $A = \mathcal{A}(\Delta)^1$, J be a minimal ideal and, for $n \geq 0$, $I_n = \{f \in A ; f(0) = f'(0) = \ldots = f^{(n)}(0) = 0\}$ (recall $f^{(0)} = f$). Then $(I_n)_{n\geq 0}$ is a strictly decreasing sequense of (primary) ideals. Assuming $0 \neq f \in J$, then $0 \neq z^{n+1} f \in I_n \cap J$. So $I_n \cap J = J$. Hence $(\bigcap_{n=1}^{\infty} I_n) \cap J = J$ and so J = 0, since $\bigcap_{n=1}^{\infty} I_n = \{0\}$. Thus \mathcal{A} has no minimal ideal. ¹Let Δ denote the closed unit disc $\{z \in \mathcal{C}, |z| \leq 1\}$. Suppose that $A(\Delta)$ denoted the set of all elements of $C(\Delta)$ which are analytic on the interior of Δ . $A(\Delta)$ is a closed subalgebra of $C(\Delta)$ Two elements $x,y \ (xy \neq yx)$ of a Banach algebra A such that $e^x.e^y \neq e^{x+y}$. ********** Consider $A = B(l^2)$ and the unilateral shift operator T on l^2 , defined by $T(x_1, x_2, ...) = (0, x_1, x_2, ...)$ and its adjoint $T^*(x_1, x_2, ...) = (x_2, x_3, ...)$. Assuming $\xi_k = (\delta_{kn})_{n \in \mathcal{N}}, k \in \mathcal{N}; \langle e^T e^{T^*} \xi_1, \xi_1 \rangle = \langle e^T \xi_1, \xi_1 \rangle = \langle \xi_1, \xi_1 \rangle = 1$, since $T^* \xi_1 = 0$ and $T \xi_1 = \xi_2$. Also $(T + T^*)(\xi_1) = \xi_2, (T + T^*)^2(\xi_1) = \xi_1 + \xi_3, ...$ and so $\langle e^{T+T^*} \xi_1, \xi_1 \rangle = \langle \xi_1, \xi_1 \rangle + \langle \xi_2, \xi_1 \rangle + \langle \frac{1}{2!} (\xi_1 + \xi_3), \xi_1 \rangle + ... \rangle 1$. Hence $e^T \cdot e^{T^*} \neq e^{T+T^*}$. A reflexive Banach algebra whose dual is also a Banach algebra. ********** The Banach algebra $l^{p_1}, 1 has the conjugate <math>l^q, q = \frac{p}{p-1}$, in addition $(l^q)^\# = l^p$. Let (Ω, μ) be a measure space and $L^p(\Omega, \mu)$ for $1 \leq p < \infty$ be the set of all complex valued measurable functions f on Ω (we assume f is equal to g if f = g a.e.[μ]) for which $||f||_p = (\int_{\Omega} |f|^p d\mu)^{\frac{1}{p}} < \infty$. $L^p(\Omega, \mu)$ with the norm $||.||_p$ is a Banach space and is a Hilbert space iff p = 2. $L^p(\Omega, \mu)$ denoted by $l^p(\Omega)$ if μ is counting measure. In particular, $l^p(\mathcal{N})$ denoted by l^p . If $1 \leq p < \infty$, then l^p can be regarded as a commutative Banach algebra with coordinatewise multiplication. (For p > 1, $||fg||_p \leq ||f||_p ||g||_p$ is a conclusion of Hölder inequality.) The l^p , $1 \leq p < \infty$, with the involution $f \longmapsto \overline{f}$ is an involutive Banach algebra. A Banach algebra A that cannot be a (vector space) direct sum of its radical Rad(A) and a Banach algebra B that is homeomorphically isomorphic with A/Rad(A). ********** Consider the Banach algebra l^2 and the dense subalgebra l^2_0 of l^2 consisting of the sequences which vanish out of a finite set. Let A_0 be the vector space direct sum $l^2_0 \oplus \mathcal{C}$. A_0 is an algebra with $(x,\alpha)(y,\beta)=(xy,0),x,y\in l^2,\alpha,\beta\in\mathcal{C}$. Also $||(x,\alpha)||=\max(||x||,|\alpha-\sum_{n=1}^\infty x(n)|)$ is a norm on A_0 . Let A is the completion of A_0 . $Rad(A)=\mathcal{C}(0,1)$. If $(x,\alpha)\in A_0$ and $[x,\alpha]$ denotes the image of (x,α) in A/Rad(A), then $[x,\alpha]\mapsto x$ defines an isometric isomorphism of $A_0/RadA$ into l^2_0 which can be extended to an isometric isomorphism of A/RadA onto l^2 . Suppose that there exists a homeomorphic isomorphism of l^2 with a subalgebra l^2_0 of l^2_0 . Let l^2_0 denotes l^2_0 in l^2_0 with a subalgebra l^2_0 of l^2_0 with a subalgebra l^2_0 of l^2_0 and l^2_0 with a subalgebra l^2_0 of l^2_0 with a subalgebra l^2_0 of l^2_0 of l^2_0 with a subalgebra l^2_0 of l^2_0 with a subalgebra l^2_0 of l^2_0 with a subalgebra l^2_0 of l^2_0 of l^2_0 of l^2_0 with a subalgebra l^2_0 of ### Ref. [Ric] C.E. Rickart, General theory of Banach algebras, Princeton, Van Nastrand, 1960. # A commutative Banach algebra where 0 is the only nilpotent. ********** A C^* -algebra is commutative if and only if it has 0 as its unique nilpotent element. This is due to I. Kaplansky.(cf. [I. Kaplansky, Ring isomorphisms of Banach algebras, Canada. J.Math. 6 (1954), 374-381.]) ## A non-commutative Banach algebra in which 0 is the only quasi-nilpotent. *********** Let A be the free algebra on two symbols w, v, i.e. the algebra of all finite linear combinations of words in u and v. The set of all such words is countable, $\{w_n\}$, and we take the standard enumeration given by $u, v, u^2, uv, v^2, u^3, u^2v, \ldots$ Let B be the algebra of all infinite series $x = \sum_{n=1}^{\infty} \alpha_n w_n$, where $||x|| = \sum_{n=1}^{\infty} ||\alpha_n| < \infty$. Then B is a non-commutative Banach algebra. Let $x \in B, x \neq 0$, and let α_p be the first non-zero coefficient in the series $\sum_{n=1}^{\infty} \alpha_n w_n$. Then the coefficient of w_p^m in x^m is precisely α_p^m and so $||x^m|| \geq |\alpha_p|^m$ $(m = 1, 2, 3, \ldots), r(x) \geq |\alpha_p| > 0$. Note that B is an infinite dimensional non-commutative Banach algebra in which the set of quasi-nilpotents coincides with the set of nilpotents. ### Ref. J. Duncan and A.W. Tullo, Finite dimensionality, nilpotents and quasi-nilpotents in Banach algebras, Proc. of the Edin. math. Soc., vol 19(Series II), Part 1, 1974. A non-commutative radical Banach algebra which is an integral domain. ********** Let A be the free algebra on two symbols w, v, i.e. the algebra of all finite linear combinations of words in u and v. The set of all such words is countable, $\{w_n\}$, and we take the standard enumeration given by $u, v, u^2, uv, v^2, u^3, u^2v, \ldots$ Let $\gamma(w_n)$ denote the length of the word w_n , and let C be the algebra of all infinite series $x = \sum_{n=1}^{\infty} \alpha_n w_n$ where $||x_n|| = \sum \frac{|\alpha_n|}{\gamma(w_n)!} < \infty$. Then C is clearly a non-commutative Banach algebra and an integral domain. Let $x \in C$ and let k be a positive integer. We have $$||x^{k}|| \leq \sum_{n_{i}} \frac{|\alpha_{n_{1}}||\alpha_{n_{2}}| \dots |\alpha_{n_{k}}|}{\gamma(w_{n_{1}}w_{n_{2}} \dots w_{n_{k}})!}$$ $$= \sum_{n_{i}} \frac{\gamma(w_{n_{1}})! \dots \gamma(w_{n_{k}})! |\alpha_{n_{1}}|}{\{\gamma(w_{n_{1}}) + \dots + \gamma(w_{n_{k}})\}! \gamma(w_{n_{1}})!} \dots \frac{|\alpha_{n_{k}}|}{\gamma(w_{n_{k}})!}$$ $$\leq \frac{1}{k!} ||x||^{k}.$$ Hence r(x) = 0. ### Ref. J. Duncan and A.W. Tullo, Finite dimensionality, nilpotents and quasi-nilpotents in Banach algebras, Proc. of the Edin. math. Soc., vol 19(Series II), Part 1, 1974. # A non-reflexive Banach space isometric with its second conjugate space. ********** For $x = (x_1, x_2, x_3, ...)$, let $||x|| = \sup[\sum (x_{p_i} - x_{p_{i+1}})^2 + (x_{p_{n+1}} - x_{p_1})^2]^{\frac{1}{2}}$ where supremum is over all positive integers n and all finite increasing sequences of at least two positive integers $p_1, p_2, ..., p_{n+1}$. Let B be the Banach space of all x for which ||x|| is finite and $\lim_n x_n = 0$. Then B is isometric with $B^{\#\#}$, but is isometric under natural mapping with a closed maximal linear subspace of $B^{\#\#}$. This example is due to R.C. James (cf. [Jam]). ### Ref. [Jam] R.C.James, A non-reflexive Banach space isometric with its second conjugate space, Proc.of.nat.Acad. of sci., Vol 37, No 3, pp. 174-177, 1951. A Banach algebra A with a Banach subalgebra B and an element $b \in B$ such that sp(A,b) is a proper subset of sp(B,b). *********** Consider $\mathcal{A}(\Delta)^1$ and the isometric isomorphism $f \longmapsto f|_T$, from $\mathcal{A}(\Delta)$ onto the closed subalgebra B of A = C(T) generated by 1 and inclusion $z: T \to \mathcal{C}$ (T is the unit circle). Then $sp(B,z) = sp(\mathcal{A}(\Delta),z) = \Delta$ and sp(A,z) = T. Let Δ denote the closed unit disc $\{z \in \mathcal{C}, |z| \leq 1\}$. Suppose that $A(\Delta)$ denoted the set of all elements of $C(\Delta)$ which are analytic on the interior of Δ . $A(\Delta)$ is a closed subalgebra of $C(\Delta)$. # A Banach algebra with an unbounded approximate identity. *********** Consider l^p as a Banach algebra with coordinatewise operations. Let $e_n = \underbrace{(1,1,1,\ldots,1,0,0,\ldots)}$. Then $\sup_n ||e_n|| = \sup\{\sqrt[p]{n} \; ; \; n \in N\} = \infty$, and for every $x = (\alpha_n) \in l^2$, $\lim_n ||xe_n - x|| = \lim_n (\sum_{k=n+1}^\infty |\alpha_k|^p)^{\frac{1}{p}} = 0$. Thus (e_n) is required approximate identity. A topologically nilpotent Banach algebra. (A Banach algebra A is called topologically nilpotent if the quantity $N_A(n) = \sup\{\|x_1...x_n\|^{\frac{1}{n}}; x_i \in A; \|x_i\| \le 1, 1 \le i \le n\}$ tends to zero as $n \to \infty$). ********** The Banach algebra C[0,1] with the supremum norm $\|.\|$ and convolution multiplication is topologically nilpotent: Defining $$u \in C([0,1])$$ by $u(t) = 1$ $(0 \le t \le 1)$, we have $u^n(t) = \frac{t^{n-1}}{(n-1)!}$ $(n = 1, 2, ...)$ and so $||u^n|| = \frac{1}{(n-1)!}$. For arbitrary $f_1, ..., f_n \in C([0,1])$, $|f_1
* f_2 * ... * f_n)(t)| \le ||f_1|| ... ||f_n|| u^n(t)$. Hence $(\frac{||f_1 * ... * f_n||}{||f_1|| ... ||f_n||})^{\frac{1}{n}} \le \frac{1}{((n-1)!)^{\frac{1}{n}}}$. Now note that $\lim_n \frac{1}{((n-1)!)^{\frac{1}{n}}} = 0$. Ref. P.G. Dixon, G. A. Willis, Approximate identities in extensions of topological nilpotent Banach algebras., Proc. Royal of Edin., 122A, 45-52, 1992. # A non-topologically nilpotent Banach algebra. ********** - 1. The algebra \mathcal{C} of complex numbers. - 2. The Volterra algebra $L^1[0,1]^1$ isn't topologically nilpotent; For establishing this, consider $x_i(t) = \begin{cases} 2^i & 0 \le t \le 2^{-i} \\ 0 & 2^{-i} \le t \le 1 \end{cases}$. Then $||x_i|| = 1$ $(i = 1, 2, \ldots)$ and for all n, $||x_1 \ldots x_n|| = 1$. The Banach space $L^1([0,1])$ with the product $(fg)(x) = \int_0^x f(x-y)g(y)dy$ is a non-unital commutative Banach algebra and called Volterra algebra. A finite dimensional commutative algebra with nilpotent radical, an identity modulo the radical, but no global identity. ********** Let $A = \mathcal{C}^2$ with multiplication (a,b)(c,d) = (ac,0) $(a,b,c,d \in \mathcal{C})$. Clearly $A^2 = A$. Its radical is $R = \{(0,b); b \in \mathcal{C}\}$ and $\frac{A}{R} \simeq \mathcal{C}$. The identity of $\frac{A}{R}$ lifts to the idempotent (1,0) in A [Ric, Theorem 2.3.9], but there is no identity in A. Ref. [Ric] C.E. Rickart, General theory of Banach algebras, Princeton, Van Nastrand, 1960. # A Banach algebra having no bounded approximate identity. *********** $\{xy \; ; \; x,y \in l^2\}$ is a proper subset of Banach algebra l^2 equipped with the coordinatewise operations. In fact $(\frac{1}{n}) \in l^2$ and if $x_n y_n = \frac{1}{n}$, then there exist an integer N such that for all n > N, $|x_n| \ge \frac{1}{\sqrt{n}}$ or for all n > N, $|y_n| \ge \frac{1}{\sqrt{n}}$, and hence $(x_n) \notin l^2$ or $(y_n) \notin l^2$. Now Cohen's factorization theorem [B&D,§11. Corollary 11] implies that l^2 has no bounded approximate identity. **Comment.** Using BA37, we conclude that the Banach algebra l^2 has neither bounded approximate identity nor unbounded one. #### Ref. [B&D] F.F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, 1973. # A Banach space with a non-complemented closed subspace. ********** c_{\circ} is a non-complemented closed subspace of $l^{\infty}.$ (cf. [R.S. Philips, On linear transformations, Trans Amer Math. Soc. 48 (1940), 516-554.]) Newmann and Rudin gave another example, i.e. the subspace of C(T) consisting of the boundary values of analytic functions. (cf. [K. Hofman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J. 1962.]) A complete metrizable linear space whose metric cannot be obtained from a norm. ********** 1. The linear space S consisting of all complex sequences with the metric $d((x_i),(y_i)) = \sum_{i=1}^{\infty} \frac{|x_i - y_i|}{2^i(1 + |x_i - y_i|)}$ is a complete metric space. Since $d(2(1,1,\cdots),(0,0,\cdots)) \neq 2d((1,1,\cdots),(0,0,\cdots))$, the space (S,d) is not normable. If $(X, \| . \|)$ is a normed linear space then $d(x, y) = \begin{cases} \| x - y \| + 1 & x \neq y \\ 0 & x = y \end{cases}$ is a metric on X, but can not be obtained from a norm, since if x is a nonzero vector of X then $d(2x, 0) \neq 2d(x, 0)$. **Comment.** $C^{\infty}([0,1])$ with its usual topology is a complete metrizable linear space whose topology cannot be obtained from a norm. Two non-isometrically isomorphic spaces with the same duals. So that a such dual space could not be a W*-algebra under any multiplication and involution. ********** c_0 and c are both closed subspaces of l^{∞} . In addition for each $x=(x_n)\in l^1$, $\rho_x:c_0\longrightarrow \mathcal{C}$ given by $(y_n)\mapsto \sum_{n=1}^\infty x_ny_n$ is a bounded linear functional on c_0 with the norm $\|\rho_x\|=\|x\|$. Clearly $c_0^{\#}$ is isometrically isomorphic to l^1 . Also for each $x=(x_n)\in l^1$, $\eta_x:c\longrightarrow \mathcal{C}$ given by $(y_n)\mapsto x_1\lim_n x_n+\sum_{n=1}^\infty x_ny_n$ is a bounded linear functional on c with the norm $\|\eta_x\|=\|x\|$. Obviously $c^{\#}$ is isometrically isomorphic to l^1 . But by BA25.DVI the closed unit ball of c_0 has no extreme point while the closed unit ball c contains at least $(1,1,1,\cdots)$ as an extreme point (since if $1=tx_n+(1-t)y_n$ with $|x_n|\leq 1$ and $|y_n|\leq 1$, then $1=tRex_n+(1-t)Rey_n$ for all n, so that $Rex_n=Rey_n=1$ and hence $x_n=y_n=1$ for each n). Thus c_0 and c_1 are not isometrically isomorphic. Now by [Sak1, Corollary 1.13.3], l^1 can not be a W^* -algebra. #### Re. [Sak1] S. Sakai, C^* -algebras and W^* -algebras, Springer-Verlag, 1971. A Banach space X such that all its closed subspaces are complemented. ********** Any Hilbert space. Note that Lindenstrauss and Tzafriri, showed that each Banach space for which every closed subspace is complemented is isomorphic to a Hilbert space (cf. [J. Lindenstrauss and L. Tzafiriri, On complemented subspaces problem. Israel J. Math., 2, 1984, 375-378].) # A Banach space which isn't metrizable in weak topology. ********** Every Hilbert space has this property (cf. [Hal, problem 21]). **Comment.** It is probably true that no infinite dimensional Banach space is metrizable in the weak topology. # Ref. [Hal] P.R. Halmos, A Hilbert space problem book, Princeton, Van Nostrand, 1967. # A Banach space which is not an inner product space. ********** The supremum norm on C[a,b] can not be obtained from an inner product. Since if f(t)=1 and $g(t)=\frac{t-a}{b-a}$, then $\parallel f\parallel=\parallel g\parallel=1,\parallel f-g\parallel=\sup\{|1-\frac{t-a}{b-a}|;t\in[a,b]\}=1$ and $\parallel f+g\parallel=\sup\{|1+\frac{t-a}{b-a}|;t\in[a,b]\}=2$ and so the parallelogram equality $\parallel f+g\parallel^2+\parallel f-g\parallel^2=2\parallel f\parallel^2+2\parallel g\parallel^2$ (which is satisfied in every inner product space) isn't held. **Comment.** Indeed this Banach space is not an inner product space in any equivalent norm. # An incomplete inner product space. ********** The linear space C[a,b] of all continuous complex-valued functions on [a,b] with the inner product $\langle f,g \rangle = \int_a^b f(x)\overline{g(x)}dx$ is not complete with respect to the norm $||f|| = \langle f,f \rangle^{\frac{1}{2}} = (\int_a^b |f(x)|^2 dx)^{\frac{1}{2}}$. In fact the sequence (f_n) where $$f_n(x) = \begin{cases} 0 & a \le x < \frac{b+a}{2} \\ (n+n_0)(x-\frac{b+a}{2}) & \frac{b+a}{2} \le x \le \frac{b+a}{2} + \frac{1}{n+n_0} \\ 1 & \frac{b+a}{2} + \frac{1}{n+n_0} < x \le b \end{cases}$$ $(n_0 \text{ is a natural number greater than } \frac{2}{b-a})$ is a Cauchy but not convergent. Two closed densely defined operators T and S on a Hilbert space such that T+S isn't closable. *********** Consider a separable infinite dimensional Hilbert space H with an orthonormal basis (ξ_n) . Let $D = \{\eta \in H; \sum_{n=1}^{\infty} n^4 | < \eta, \xi_n > |^2 < \infty\}, \zeta = \sum_{n=2}^{\infty} n^{-1}\xi_n$, and define the operators S and T with the domain D, which is dense in H, by $$S\eta = \sum_{n=2}^{\infty} n^2 < \eta, \xi_n > \xi_n \quad , \quad T\eta = S\eta + < S\eta, \zeta > \xi_1 \quad (\eta \in D).$$ Then -S and T are closed densely defined and T + (-S) isn't closable. (cf. Problem 2.8.43 of [K&R1]) #### Ref [K&R1] R.V. Kadilon and J.R. Ringrase, Fundamentals of the theory of operator algebras (I), Acad. Press, 1983. A Hilbert space whose Hamel dimension and Hilbert dimension are different. ********** The Hilbert space l^2 has the orthonormal basis (e_n) with $e_n(m) = \delta_{mn}$; $m, n \in \mathbb{N}$. Hence its Hilbert dimension is \aleph_0 . But the set of all sequences $x_{\alpha} = \langle 1, \alpha, \alpha^2, \alpha^3, \dots \rangle, 0 < \alpha < 1$ is a linearly independent uncountable subset of l^2 . Thus the Hamel dimension of l^2 isn't \aleph_0 . **Comment.** This Hilbert dimension is probably the only one which this can happen. # A nonclosable unbounded operator on a Hilbert space. ********* Let H be a separable Hilbert space with the standard orthonormal basis (ξ_n) . Define T on H by $T\xi_n=n\xi_1$ and extend T to the dense linear subspace D(T) of finite linear combinations of basis elements ξ_n (we denote the extension of T by the same T). Then T is a densely defined unbounded operator on H (since $\lim_{n\to 0} \frac{\parallel T\xi_n \parallel}{\parallel \xi_n \parallel} = \lim_{n\to 0} n = \infty$). Moreover T is not closable, for $\lim_{n\to 0} \frac{\xi_n}{n} = 0$ but $\lim_{n\to 0} T(\frac{\xi_n}{n}) = \xi_1$. On a separable infinite dimensional Banach space X there exists another norm under which X isn't separable. ********** Suppose that $\{e_i; i \in I\}$ is a Hamel basis for X and I is countable. For each $i \in I$, let X_i denote the linear span of $\{e_1, e_2, \cdots, e_n\}$, then $X = \bigcup_{i=1}^n X_i$. But the X_i are proper closed subspaces of X and so are nowhere dense, that is impossible by the Baire category theorem. Thus I is uncountable. Let $a \in X$, $a = \sum_{i \in I} \lambda_i e_i$ where all λ except finitely many are zero. Set $\| a \|' = \sum_{i \in I} |\lambda_i|$. Then $\| \cdot \|'$ is obviously a norm on X. For $i \neq j$, $\| e_i - e_j \|' = 2$ and I is uncountable, hence I is uncountable subset. # Notation In this site we use $X^{\#}$ for the topological dual of a normed space X, S' for the commutant of a subset S of B(H) and T^* for the Hilbert adjoint of an operator T in B(H) for any Hilbert space H. # Main Examples (I) The set of complex numbers C with usual addition, multiplication and the absolute value as a norm is a unital commutative Banach algebra. ********** (II) \mathcal{C}^n with the coordinatewise addition, scalar multiplication and the inner product $$\langle (z_1,\ldots,z_n),(w_1,\ldots,w_n)\rangle = \sum_{i=1}^n z_i \overline{w_i}$$ (1) is a Hilbert space.
********** (III) The space C^2 (see (II)) with the product (a,b)(a',b')=(aa',ab'+a'b) is a unital commutative Banach algebra. ********** (IV) Let X be a non-empty set and Y is a normed (Banach) space. Then the set $l^{\infty}(X,Y)$ of all bounded mappings of X into Y with the pointwise addition $(f+g)(x) = f(x) + g(x), x \in X$; poinwise scalar multiplication $(\lambda f)(x) = \lambda f(x), \lambda \in \mathcal{C}, x \in X$; and supremum norm $||f|| = \sup\{|f(x)|; x \in X\}$ is a normed (Banach) space. If Y is normed algebra then $l^{\infty}(X,Y)$ with the pointwise product (fg)(x) = f(x)g(x) is a normed algebra. We denote $l^{\infty}(E, \mathcal{C})$ with $l^{\infty}(E)$ that is a unital cammutative C^* -algebra under the involution $f^* = \overline{f}$, the conjugate of f. Also $l^{\infty}(\mathcal{N})$ is denoted by l^{∞} . The set of all convergent sequences of complex numbers, c, is a closed *-subalgebra of l^{∞} and the set of all elements of c converging to zero, c_0 , is a closed *-subalgebra of c. ********** (V) If X is a topological space, then the set $C_b(X)$ of all bounded continuous complex valued functions on X is a closed *-subalgebra of $l^{\infty}(X)$ containing the constant function 1. So $C_b(X)$ is a unital commutative C^* -algebra. ********** (VI) If X is a locally compact Hausdorff space, then the set $C_0(X)$ of all continuous complex valued functions on X vanishing at infinity (i.e. for each $\varepsilon > 0$, the set $\{x \in X; |f(x)| \geq \varepsilon\}$ is compact) is a closed *-subalgebra of $l^{\infty}(X)$ and so is a commutative C^* -algebra. $C_0(X)$ is unital iff X is compact. Each non-unital commutative C^* -algebra is of this form (cf. [Mur]). ********** (VII) If X is a compact Hausdorff space, then the set C(X) of all continuous complex functions on X is exactly $C_0(X)$ and so is a unital commutative C^* -algebra. Each unital commutative C^* -algebra is of this form (cf. [Mur]). By ([K&R1, Th. 5.3.1]), An abelian W^* -algebra is isometrically *-isomorphic to C(X) for some extremely disconnected compact Hausdorff space X. (A topological space is called extremely disconnected or Stonean if the closure of any open set is open). ********** (VIII) Let Δ denote the closed unit disc $\{z \in \mathcal{C}, |z| \leq 1\}$. Suppose that $A(\Delta)$ denoted the set of all elements of $C(\Delta)$ which are analytic on the interior of Δ . $A(\Delta)$ is a closed subalgebra of $C(\Delta)$ (Since if $f_n \in A(\Delta)$ and (f_n) converges to $f \in C(\Delta)$ in the norm of $C(\Delta)$ and γ is a simple closed path in the interior of Δ , then $\lim_{n\to\infty} \int_{\gamma} f_n(z)dz = \int_{\gamma} f(z)dz$ but by Cauchy's theorem $\int_{\gamma} f_n(z)dz = 0 (n \in \mathcal{N})$. So $\int_{\gamma} f(z)dz = 0$. Now Morera's theorem implies that f is analytic in the interior of Δ), and so it is a unital commutative Banach algebra. We call this the disc algebra. ********** (IX) Let (Ω, μ) be a measure space and $L^p(\Omega, \mu)$ for $1 \leq p < \infty$ be the set of all complex valued measurable functions f on Ω (we assume f is equal to g if f = g a.e. $[\mu]$) for which $||f||_p = (\int_{\Omega} |f|^p d\mu)^{\frac{1}{2}} < \infty$. $L^p(\Omega, \mu)$ with the norm $||.||_p$ is a Banach space and is a Hilbert space iff p = 2. $L^p(\Omega, \mu)$ denoted by $l^p(\Omega)$ if μ is counting measure. In particular, $l^p(\mathcal{N})$ denoted by l^p . Let $H = l^2$, (α_n) be a bounded sequence of complex numbers, and (ξ_n) be the (usual) standard orthonormal basis of H, that is, $(\xi_n)(m) = \delta_{nm}$, $n, m \in \mathcal{N}$ (δ denoted the kronecker delta), so that $\zeta = \sum_{n=1}^{\infty} \langle \zeta, \xi_n \rangle \xi_n$ for any $\zeta \in H$. Then the operator $T \in B(H)$ defined by $T\xi_n = \alpha_n \xi_{n+1}$ is called a weighted shift with the weights (α_n) . If $\alpha_n = 1$ for all n, then T is called unilateral shift operator. It is straightforward to show that $||T|| = \sup_n |\alpha_n|$, $r(T) = \lim_k \sup_n |\prod_{i=0}^{k-1} \alpha_{n+i}|^{1/k}$ and $T^*\xi_1 = 0$ and $T^*\xi_n = \overline{\alpha_n}\xi_{n-1}$. If $1 \leq p < \infty$, then l^p can be regarded as a commutative Banach algebra with coordinatewise multiplication. (For p > 1, $||fg||_p \leq ||f||_p ||g||_p$ is a conclusion of Hölder inequality.) The l^p , $1 \leq p < \infty$, with the involution $f \longmapsto \overline{f}$ is an involutive Banach algebra. ********** - (X) The Banach space $L^1([0,1])$ with the product $(fg)(x) = \int_0^x f(x-y)g(y)dy$ is a non-unital commutative Banach algebra. It is called Volterra algebra. - (XI) Let G be a locally compact group and μ a left invariant Haar measure on G, i.e. a Borel measure satisfying the following conditions. - (a) $\mu(xE) = \mu(E)$, for every $x \in E$ and every measurable $E \subseteq G$. - (b) $\mu(U) > 0$, for every non-void open set $U \subseteq G$. - (c) $\mu(K) < \infty$, for every compact set $K \subseteq G$. With the notation IX, and under the product given by the convolution $(f * g)(s) = \int_G f(t)g(t^{-1}s)d\mu(t)$ $(s \in G), L^1(G)$ is a commutative Banach algebra which called the group algebra of G. In particular, we can cansider $L^1(\mathcal{R})$, where the Lebesgue measure is an invariant Haar measure on \mathcal{R} . Also if G be an (algebraic) group, then G with the discrete topology is a locally compact group. A left invariant Haar measure on G is the counting measure on G. The corresponding group algebra, denoted by $l^1(G)$ and is called discrete group algebra. ********** (XII) Let S be a semi-group and α a positive real-valued function on S such that $\alpha(st) \leq \alpha(s)\alpha(t)$ $(s,t \in S)$. If $l^1(S,\alpha)$ is the set of all complex-valued functions f on S for which $\sum_{s \in S} |f(s)| |\alpha(s)| < \infty$, then $l^1(S,\alpha)$ with the usual pointwise addition and scalar multiplication and the product (convolution) $(f*g)(s) = \sum_{tu=s} f(t)g(u)$ (if tu=s has no solutions, we assume (f*g)(s)=0), and with the norm $||f||=\sum_{s \in S} |f(s)|\alpha(s)$ is a Banach algebra. If $\alpha(s)=1$, $l^1(S,\alpha)=l^1(S)$ is called discrete semi-group algebra, Moreover if S=G is a group then $l^1(S)$ is the same discrete group algebra $l^1(G)$. *********** (XIII) Let (Ω, μ) be a measure space. Then the set $L^{\infty}(\Omega, \mu)$ consisting of all complex valued measurable functions f on Ω (with identifying functions which are almost everywhere equal) for which $||f||_{\infty} = \inf\{\lambda; \mu\{x \in \Omega; |f(x)| > \lambda\} = 0\} < \infty$ with the essential norm $||.||_{\infty}$ and pointwise operations is a unital commutative Banach algebra. ********** (XIV) If (Ω, μ) is a measure space, then $B_{\infty}(\Omega)$ that is the set of all bounded complex valued measurable functions on Ω is a closed subalgebra of $l^{\infty}(\Omega)$ and $L^{\infty}(\Omega, \mu)$ (again we identify almost everywhere equal functions). *********** (XV) The algebra $C^m([0,1])$ of the complex valued m times continuously differentiable on [0,1] with the norm $||f|| = \sum_{k=0}^m \frac{1}{K!} \sup_{x \in [0,1]} |f^{(k)}(x)|$ is a unital commutative Banach algebra. Its maximal ideals are precisely the $I_z = \{f; f(z) = 0\}$ where $z \in [0,1]$. Hence $C^m([0,1])$ is semi-simple. ********** (XVI) Suppose W is the set of all complex-valued functions f defined on the interval $[0,2\pi]$ of the form $f(t)=\sum_{k\in\mathcal{Z}}\alpha_k\exp(ikt)$ $(t\in[0,2\pi])$, where the $\alpha_k\in\mathcal{C}$ and $\sum_k|\alpha_k|<\infty$. The set W with the usual pointwise operations and with the norm $||f||=\sum_{k\in\mathcal{Z}}|\alpha_k|$ is a commutative Banach algebra and called the Wiener algebra. There is an isometric isomorphism between $l^1(\mathcal{Z})$ and W given by $f\longrightarrow \tilde{f}$ where $\tilde{f}(t)=\sum_{k\in\mathcal{Z}}f(k)\exp(ikt)$ $(t\in[0,2\pi])$. ********** (XVII) Let X and Y are normed spaces. Then the set of all bounded linear mappings (bounded operators) from X into Y with the operator norm $||T|| = \sup\{||Tx||; ||x|| \le 1\}$ and with the pointwise addition and scalar multiplication is a normed space. It is Banach iff Y is Banach. If Y = X, the space B(X, X) = B(X) with the product (ST)x = S(Tx) is a normed algebra (Banach algebra, if X is a Banach space). ********* (XVIII) In (XVII) if X = H is a Hilbert space, then B(H) with the involution $T \longmapsto T^*$ being defined by $\langle T^*x, y \rangle = \langle x, Ty \rangle$ $(x, y \in H)$ is a C^* -algebra. Each C^* -algebra is isometrically isomorphic to a norm closed *-subalgebra of B(H) for a Hilbert space H. ********* (XIX) An operator from normed space X into normed space Y is called compact if T(U) is relatively compact in Y, where U is open unit ball of X; or equivalently for each bounded sequence (x_n) in X, (Tx_n) has a convergent subsequent in Y. The set of all compact operators from X into Y is denoted by K(X,Y) that is a subspace of B(X,Y). If X is a Banach space, K(X) = K(X, X) is a closed two-sided ideal of B(X). ********** (XX) Identifying $M_n(\mathcal{C})$, the algebra of all $n \times n$ matrices with entries in \mathcal{C} , with $B(\mathcal{C}^n) = K(\mathcal{C}^n)$. So it is a unital non-commutative \mathcal{C}^* -algebra. ********** (XXI) Let H be a Hilbert space and $x \overline{\otimes} y$ is the (one-rank) operator given by $(x \overline{\otimes} y)z = \langle z, y \rangle x$. Suppose that $(e_i)_{i \in I}$, $(f_i)_{i \in I}$ are othonormal bases for H and $(\lambda_i)_{i \in I}$ is a family of complex numbers indexed by the same set I. The operator $T = \sum_{i \in I} \lambda_i e_i \overline{\otimes} f_i$ is well-defined and belongs to B(H) iff (λ_i) is bounded and then $||T|| = \sup\{|\lambda_i|; i \in I\}$.
********** (XXIa) An operator T is called of finite rank n if $n = dim T(H) < \infty$. The set F(H) of all finite rank operators is a self-adjoint two-sided ideal of B(H). It is consisting of all operators as $\sum_{i \in I} \lambda_i e_i \overline{\otimes} f_i \in B(H)$ such that $\lambda_i = 0$ for all i except finitely many i. *********** (XXIb) The two-sided ideal of the compact operators K(H) is self-adjoint and F(H) is norm-dense in K(H). K(H) is consisting of all operators as $T = \sum_{i \in I} \lambda_i e_i \overline{\otimes} f_i \in B(H)$ such that the λ_i are positive (the λ_i^2 are the eigenvalues of T^*T). This sum has either a finite or a denumerably infinite number of terms; in the last case, $\lambda_i \to 0$. *********** (XXIc) The set S(H) of all operators T for which $\sum_{i \in I} ||Te_i||^2 < \infty$ is a self-adjoint ideal of B(H). These operators are called Hilbert-Schmidt operators on H. The algebra S(H) with the Hilbert-Schmidt norm $||T||_2 = (\sum_{i \in I} ||Te_i||^2)^{1/2}$ is a Banach algebra. It contains operators of finite rank as a dense subset. For any pair of operators T and S in S(H), the family $(< Te_i, Se_i >)_{i \in I}$ is summable. Its sum (A, B) defines an inner product in S(H) and $(T, T)^{1/2} = ||T||_2$. So S(H) is a Hilbert space (independent on the choice basis (e_i)). $S(H) \subseteq K(H)$. S(H) consists of precisely those compact operators $T = \sum_i \lambda_i e_i \overline{\otimes} f_i$ for which $\sum_i \lambda_i^2 < \infty$. In addition $||T||_2 = (\sum_i \lambda_i^2)^{1/2}$. *********** (XXId) The set of all products of two Hilbert-Schmidt operators is denoted by N(H) and its elements are called trace-class operators. This set is a self-adjoint two-sided ideal of B(H) and coincides with the set of those operators T for which $\sum_{i\in I}<|T|e_i,e_i><\infty$ where |T| is the absolute value of T in the C^* -algebra B(H). If $||T||_1=\sum_{i\in I}<|T|e_i,e_i>$, then N(H) with this norm is a Banach algebra. F(H) is a dense subset of N(H). N(H) is contained in K(H) and contains S(H). The elements of N(H) are precisely the compact operators $T=\sum_{i\in I}\lambda_ie_i\overline{\otimes}f_i$ for which $\sum_i\lambda_i<\infty$. Moreover, $||T||_1=\sum_i\lambda_i$. ********** (XXII) The set $\mathcal{C}[z]$ of all polynomials in an indeterminate z with complex coefficients under usual operations on polynomials and with the norm $||p|| = \sup_{|\lambda| < 1} |p(\lambda)|$ is a normed algebra. ********** (XXIII) The set of all formal polynomials of degree at most n with the usual addition, scalar multiplication and product (but together with the convention that $x^k = 0$ if k > n) and with the norm $||p|| = \sum_{k=1}^{n} |\alpha_k|$ ($p(x) = \sum_{k=1}^{n} \alpha_k x^k$) is a finite dimensional Banach algebra. ************ (XXIV) The algebra C([0,1]) with the supremum norm $\|.\|$ and multiplication $(f*g)(t)=\int_0^t f(s)g(t-s)ds$ is a Banach algebra. #### Main References [A&B] C.D. Aliprantis and O. Burkinshaw, Problems in real analysis, Acad. Press, 1990. [Aup] B. Aupetit, A primer on spectral theory, Springer-Verlag, 1991. [**B&D**] F.F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, 1973. [Con] J.B. Conway, A course in functional analysis, New York, Springer-Verlag, 1990. [G&O] B.R. Gelbaum and J.M.H. Olmsted, Theorems & counterexamples in mathematics, Springer-Verlag, 1990. [Gui] A. Guichardet, Special topics in topological algebras, New York, Gordon & Breach, 1968. [Hel] A.Ya. Helemskii, The Homology of Banach and topological algebras, Kluwer Acad. Pub., 1989. [Hal] P.R. Halmos, A Hilbert space problem book, Princeton, Van Nostrand, 1967. [K&R1] R.V. Kadilon and J.R. Ringrase, Fundamentals of the theory of operator algebras (I), Acad. Press, 1983. [K&R2] R.V. Kadilon and J.R. Ringrase, Fundamentals of the theory of operator algebras (II), Acad. Press, 1986. [K&R3] R.V. Kadilon and J.R. Ringrase, Fundamentals of the theory of operator algebras (III), Acad. Press, 1991. [Ker] E. Kreyszig, Introductory functional analysis with applications, John Wiley & Sons, 1978. [Mad] I.J. Maddox, Elements of functional analysis, Cambridge Unir.press, 1970. [Mur] G.J. Murphy, C^* -algebras and operator theory, Academic Press, 1990. [Ped] G.K. Pederson, Analysis now, Springer-Verlag, 1989. [Ric] C.E. Rickart, General theory of Banach algebras, Princeton, Van Nastrand, 1960. [Rud1] W. Rudin, Functional analysis, McGraw-Hill, 1989. [Rud2] W. Rudin, Real and complex analysis, McGraw-Hill, 1986. [Sak1] S. Sakai, C^* -algebras and W^* -algebras, Springer-Verlag, 1971. [Sak2] S. Sakai, Operator algebras in dynamical systems, Cambridge Univ. Press, 1991. [Zel] W. Zelazko, Banach algebras, Elsevier Publishing Company, 1973. A construction of a bounded approximate identity for a commutative C^* -algebra A. *********** Let $A = C_0(X)$ be a commutative C^* -algebra. Consider the set Λ consisting of all compact subsets of X. (Λ, \subseteq) is a directed set. For each compact subset K of X, by Urysohn's lemma, there exists a function $f_K \in C_0(X)$ equal to 1 on K satisfying $0 \le f \le 1$. For each $g \in C_0(X)$ and given $\varepsilon > 0$, $K_0 = \{x \in X; |g(x)| \ge \varepsilon\}$ is compact. Hence for all $K \supseteq K_0$, $||f_K g - g||_{\infty} = \sup_{x \in X} |f_K(x)g(x) - g(x)| < \varepsilon$. Therefore $\lim_{K \in \Lambda} f_K g = g$, Thus $(f_K)_{K \in \Lambda}$ is a bounded approximate identity for A. Two element x, y in a C^* -algebra A such that $sp(xy) \neq sp(yx)$. ********** Let $A=B(l^2)$, x be the unilateral shift operator on l^2 , defined by $T(\alpha_1,\alpha_2,\ldots)=(0,\alpha_1,\alpha_2,\ldots)$, and $y=T^*$. Then $TT^*(\alpha_1,\alpha_2,\ldots)=T(\alpha_2,\alpha_3,\ldots)=(0,\alpha_2,\alpha_3,\ldots)$ and $T^*T(\alpha_1,\alpha_2,\ldots)=T^*(0,\alpha_1,\alpha_2,\ldots)=(\alpha_1,\alpha_2,\ldots)$. Hence $sp(T^*T)=\{1\}$ but $0\in sp(TT^*)$ (since $(TT^*)(1,0,0,\ldots)=(0,0,\ldots)$). # An involutive Banach algebra A which isn't a C^* -algebra. ********** Consider $A=A(\Delta)^1$. Then $f^*(z)=\overline{f(\bar{z})}$ gives an involution on A such that $\|f\|=\sup_{z\in D}|f(z)|=\sup_{z\in D}|f(\bar{z})|=\|f^*\|$. Consider $f(z)=z^2$ and g(z)=z, then g is self-adjoint and $f=gg^*$. So f is positive and we must have $sp(f)\subseteq [0,\infty)$ contradicting $sp(f)=\Delta$. Hence A isn't a C^* -algebra. ¹Let Δ denote the closed unit disc $\{z \in \mathcal{C}, |z| \leq 1\}$. Suppose that $A(\Delta)$ denoted the set of all elements of $C(\Delta)$ which are analytic on the interior of Δ . $A(\Delta)$ is a closed subalgebra of $C(\Delta)$. An involution # on Banach algebra $M_4(\mathcal{C})$, two normal matrix T and S such that TS = ST but $TS^\# \neq S^\#T$, S+T isn't normal and $||SS^\#|| \neq ||S||^2$. ********* Set Then $Q^{\#} = U^{-1}Q^*U$ where Q^* denote the conjugate transpose of Q is an involution on $M_4(\mathcal{C})$. An straightforward computation shows that S and T has desired properties. #### Ref. [Rud1] W. Rudin, Functional analisis, McGraw-Hill, 1989. # A Banach algebra with a unique C^* -involution. ********** Every C^* -algebra has this property. Indeed if A is a untial Banach algebra which is C^* -algebra with respect to involutions * and #, then if $x=x^*$ and f be a state on A (i.e., by [K&R1, Theorem 4.3.2] is a bounded linear functional satisfying ||f|| = f(1) = 1) then, $f(x) = \overline{f(x^*)} = \overline{f(x)}$, so that $f(i(x-x^\#)) = i(f(x) - \overline{f(x)}) = 0$. Therefore, by [K&R1, Proposition 4.3.3] $sp(i(x-x^\#)) = \{0\}$. Hence $i(x-x^\#) = 0$, by [K&R1, Proposition 4.1.1.(i)]. So $x^\# = x = x^*$. For an arbitrary element x with the real and imaginary parts x_1 and x_2 , we have $x^* = x_1 - ix_2 = x^\#$. (If A doesn't have a unit, it is enough to consider its unitization). # Ref. [K&R1] R.V. Kadilon, J.R. Ringrase, fundamentals of the theory of operator algebras (I), Acad. Press, 1983. # A C^* -algebra in which invertible elements are dense. ********** Consider $l^{\infty}(\Omega)$, the C^* -algebra of all bounded mappings from a set Ω into \mathcal{C} , $f \in l^{\infty}(\Omega), \varepsilon > 0$. If $$g(t) = \begin{cases} f(t) & |f(t)| \ge \varepsilon \\ \varepsilon & |f(t)| < \varepsilon \end{cases}$$ we have $g \in l^{\infty}(\Omega)$, $||g - f|| \le 2\varepsilon$. Since $\inf |g(t)| \ge \varepsilon > 0$, g is invertible. Comment. C([a, b]) provides a separable example. # A liminal C^* -algebra which isn't postliminal. ********** Let A denote Toeplitz algebra. $K(H^2)$ is liminal. $\frac{A}{K(H^2)}$ is *-isomorphic to C(T), so it is abelian and therefore liminal. Hence A is postliminal .But identity representation of A on H^2 is irreducible and not finite dimensional, so A isn't liminal. For details see [Mur, Example 5.6.4]. # Ref. [Mur] G.J. Murphy, C*-algebras and operator theory, Academic Press, 1990. A closed subalgebra of a C^* -algebra that isn't self-adjoint. ********* The disc algebra $\mathcal{A}(\Delta)^{-1}$ is a closed subalgebra of the C^* -algebra $C(\Delta)$. If f and \bar{f} both belong to $\mathcal{A}(\Delta)$, then by the Cauchy-Riemann equations f will be constant. So $\mathcal{A}(\Delta)$ isn't self-adjoint. ¹(VIII) Let Δ denote the closed unit disc $\{z \in \mathcal{C}, |z| \leq 1\}$. Suppose that $A(\Delta)$ denoted the set of all elements of $C(\Delta)$ which are analytic on the interior of Δ . $A(\Delta)$ is a closed subalgebra of $C(\Delta)$. # A closed left ideal of a C^* -algebra without any left approximate identity. ********* If ξ is a unit vector in a Hilbert space H with dimension at least 2, then $\Delta = \{T \in B(H); T\xi = 0\}$ is a closed left ideal in the C^* -algebra B(H). If Δ has a left approximate identity $\{S_{\alpha}\}$ and $\eta \neq 0$ is a vector in H such that $\langle \xi,
\eta \rangle = 0$, then $\xi \otimes \eta \in \Delta$ and so $\lim_{\alpha} S_{\alpha}(\xi \otimes \eta) = \xi \otimes \eta$. Thus $\lim_{\alpha} ||(S_{\alpha}\xi - \xi) \otimes \eta|| = 0$ $\lim_{\alpha} ||S_{\alpha}\xi - \xi|| + \|\eta\| = 0$, hence $0 = \lim_{\alpha} ||S_{\alpha}\xi - \xi|| = \|\xi\|$, a contradiction. Thus Δ has no left approximate identity. Note that for ζ_1 and ζ_2 in H the rank one operator $\zeta_1 \overline{\otimes} \zeta_2$ is defined by $$(\zeta_1 \overline{\otimes} \zeta_2)(\zeta_3) = <\zeta_3, \zeta_2 > \zeta_1.$$ A nonclosed ideal that is not self-adjoint in a commutative C^* -algebra. ********** Consider C^* -algebra $A=C(\Delta)$ and the ideal $I=fA=\{fg\;;\;g\in A\}$, where f(z)=z. $f^*(z)=\bar{z}$ and if $f^*\in I$, then there exists an element $g\in A$ such that $f^*=fg$. So $g(0)=\lim_{z\to 0}g(z)=\lim_{z\to 0}\frac{\bar{z}}{z}$, a contradiction. Thus I isn't self-adjoint. A closed ideal I of a commutative C^* -algebra A and a closed ideal J of I such that J isn't an ideal of A. ********** Let A=C([0,1]), I=Af and $J=\mathcal{C}f+Af^2$, where $f(t)=t; 0\leq t\leq 1$. Then J is an ideal of I and I is an ideal of A; but $f\in J$ and $f.f^{\frac{1}{2}}\not\in J$ (otherwise, there exist $\lambda\in\mathcal{C}$ and $g\in A$ such that $f.f^{\frac{1}{2}}=\lambda f+gf^2$. So $\lim_{t\to 0}t^{\frac{1}{2}}=\lambda+\lim_{t\to 0}tg(t)$. Therefore $\lambda=0$ and $t^{\frac{1}{2}}=tg$ contradicting the continuity of g. Thus J isn't an ideal of A. A C^* -algebra A where every unitary element is of the form exp(ih) for a self-adjoint $h \in A$. *********** Suppose that A = C([0,1]). For each unitary $u \in A$, the mapping $t \longmapsto u_t$ from [0,1] to the unitary group of G of A with $u_t(x) = u((1-t)x)$ connects u to u(0)1. If $u(0) = exp(i\theta)$ for some real number θ , $\{exp(it\theta)1; 0 \le t \le 1\}$ in G connects 1 to u(0)1. Therefore u is connected to 1. Now by [K&R3, Exercise 4.6.7], u = exp(ih) for some $h \in A_h$. Comment. By [K&R1, Theorem 5.2.1], A isn't W^* -algebra. Ref. [K&R1] R.V. Kadilon, J.R. Ringrase, Fundamentals of the theory of operator algebras (I), Acad. Press, 1983. [K&R3] R.V. Kadilon, J.R. Ringrase, Fundamentals of the theory of operator algebras (III), Acad. Press, 1991. ## A C^* -algebra that isn't a von Neumann algebra. ********** K(H), where H is a separable infinite dimensional Hilbert space is a C^* algebra but not a von Neumann algebra. In fact if $(e_n)_{n\in\mathcal{N}}$ is a orthonormal basis for H and $P_n = \sum_{i=1}^n e_i \overline{\otimes} e_i$, then P_n is a finite-rank projection converging strongly to the identity operator I (since for each $x \in H$, $I(x) = x = \sum_{i=1}^{\infty} < x$, $e_i > e_i = \lim_n P_n(x)$). If K(H) were a von-Neumann algebra, it should be $I \in K(H)$, a contradiction. A C^* -algebra A in which the closed unit ball of A^+ isn't the closed convex hull of the projections of A. (Note that the closed unit ball of positive elements of each hereditary C^* -algebra A of a von Neumann algebra is the closed convex hull of its projections). ********** The only projections of C([0,1]) are 0 and 1. So the closed convex hull of C([0,1]) is $\{f \mid \exists c \in [0,1]; f=c\}$, not equal to $(C([0,1]))_1^+$. A primitive C^* -algebra with a unique nontrivial closed bi-ideal (and so that it is not simple). ********** Let H be a separable infinite dimensional Hilbert space and A = B(H). Then K(H) is a nontrivial closed bi-ideal of B(H), and if I is a nontrivial closed bi-ideal of B(H), we have $F(H) \subseteq I$ (cf. [Mur, Th. 2.4.7]). Hence $K(H) \subseteq I$. If $I \not\subseteq K(H)$, then I has an infinite-rank projection p (cf. [Mur, Cor. 4.1.14]). For each infinite-rank projection q, there exist $u \in B(H)$ such that $p = u^*u$ and $q = uu^*$ (if (e_n) and (f_n) are orthonormal basis for p(H) and q(H) resp., define $u(e_n) = f_n$ and u = 0 on $p(H)^{\perp}$) so $q = upu^* \in I$. Hence I = B(H), a contradiction. Since $B(H)' = \mathcal{C}1$ (For $(\mathcal{C}1)' = B(H)$ and this is because of $(\mathcal{C}1)$ " = $\mathcal{C}1$), the identity representation $B(H) \longrightarrow B(H)$ is a faithful irreducible representation. Hence B(H) is primitive. #### Ref. [Mur] G.J. Murphy, C^* -algebras and operator theory, Academic Press, 1990. A non-separable von Neumann algebra with a (unique) separable closed *-bi-ideal. ********** Let H be a separable infinite dimensional Hilbert space and (x_n) be a dense sequence in H. Then K(H) which is the closed linear span of rank-one projections, is the closure of the linear span of $x_n \overline{\otimes} x_n$ with rational coefficients,hence it is separable. If (e_n) is an orthonormal basis for H and for each subset S of the natural numbers \mathcal{N} , $$P_S(e_n) = \begin{cases} e_n & n \in S \\ 0 & \text{otherwise} \end{cases},$$ then $||P_S - P_{S'}|| = 1$, for $S \neq S'$. Thus $\{P_S\}_{S \in 2^N}$ cannot be in the closure of any countable sequence of B(H). Thus B(H) isn't separable. Note that for x and y in H the rank one operator $x \overline{\otimes} y$ is defined by $$(x \overline{\otimes} y)(z) = \langle z, y \rangle x.$$ A primitive C^* -algebra A acting on a Hilbert space H such that $A \cap A' = \{0\}$ (A' is the commutant of A in B(H)). ********** Let H be an infinite dimensional Hilbert space, then K(H) is primitive, since the identity representation $$K(H) \longrightarrow B(H)$$ $$T \longmapsto T$$ is faithful irreducible (if $T \in K(H)'$, then for each x in H, $T(x \otimes x) = (x \otimes x)T$. So $Tx \otimes x = x \otimes T^*(x)$. Hence $\langle x, x \rangle Tx = \langle x, T^*x \rangle x$. So $Tx = \lambda(x)x$ for some $\lambda(x) \in \mathcal{C}$. For linearly independent vectors x and y, $\lambda(x+y)(x+y) = T(x+y) = Tx + Ty = \lambda(x)x + \lambda(y)y$. So $\lambda(x+y) = \lambda(x) = \lambda(y)$. Hence for each e in an orthonormal basis E of H, $\lambda(e) = \lambda(e_0)$, where e_0 is an arbitrary fixed element of E. Therefore $Tx = T(\sum_{e \in E} \mu_e e) = \sum_{e \in E} \mu_e \lambda(e_0)e = \lambda(e_0)x$. So $T = \lambda(e_0)I_H$. Thus $K(H)' \subseteq \mathcal{C}I_H$. Obviously $\mathcal{C}I_H \subseteq K(H)'$. So $K(H)' = \mathcal{C}I_H$). But $I_H \notin K(H)$. So $K(H) \cap (K(H))' = \{0\}$. Note that for x and y in H the rank one operator $x \overline{\otimes} y$ is defined by $$(x\overline{\otimes}y)(z) = \langle z, y \rangle x.$$ # A non-primitive C^* -algebra. *********** C[0,1]. In fact if A is a commutative primitive C^* -algebra, then A has a nonzero faithful irreducible representation (H,φ) . So $(\varphi(A))'=\mathcal{C}1$. But $\varphi(A)$ is commutative, so $\varphi(A)\subseteq (\varphi(A))'=\mathcal{C}1$. But $\varphi(A)\neq \{0\}$ so $\varphi(A)=\mathcal{C}1$. Thus $A\simeq \varphi(A)=\mathcal{C}1$. # A simple C^* -algebra. ********* K(H) is a simple C^* -algebra. For if I is a nonzero closed bi-ideal of K(H), then it is a closed bi-ideal of B(H), so by [Mur, Th. 2.4.7] $F(H) \subseteq I$, hence $K(H) = \overline{F(H)} \subseteq \overline{I} = I$. Therefore I = K(H). # Ref. [Mur] G.J. Murphy, C^* -algebras and operator theory, Academic Press, 1990. A non-unital C^* -algebra with compact primitive ideal space. *********** If H is an infinite dimensional Hilbert space, then the non-unital C^* -algebra K(H) is simple. By (CW17), $(K(H))' = \mathcal{C}1$, so the identity representation $$K(H) \longrightarrow B(H)$$ $$T \longmapsto T$$ is a faitful irreducible representation, hence $\{0\}$ is a primitive ideal of K(H). By (CW19), K(H) is simple, so primitive ideal space of K(H) is $\{\{0\}\}$, a compact space. A non-liminal (CCR) C^* -algebra. ********** Let H be an infinite dimensional Hilbert space. Then faithful irreducible representation $$B(H) \longrightarrow B(H) \qquad (B(H)' = C1)$$ $T \longmapsto T$ together with $B(H) \neq K(H)$, shows that B(H) isn't liminal. Comment. Another example may be found in CW22. A C^* -algebra A and a closed bi-ideal J of A such that $\frac{A}{J}$ and J are liminal, but A is not liminal. ********** Let H be an infinite dimensional Hilbert space and I_H be the identity operator on H. Then $A = K(H) + \mathcal{C}I_H$ isn't liminal (otherwise, since identity representation $K(H) + \mathcal{C}I_H \longrightarrow B(H)$ is nonzero irreducible $((K(H) + \mathcal{C}I_H)' = K(H)' = \mathcal{C}I_H$ (see CW17)) we should have $I_H \in K(H)$, a contradiction). But K(H) is liminal, since each nonzero irreducible representation of K(H) is unitarily equivalent to identity representation $K(H) \longrightarrow B(H)$ (see [Mur, page 146]). Also $\frac{A}{J} \simeq \mathcal{C}I_H$ which is finite dimensional and so is liminal (Every finite dimensional C^* -algebra B is liminal, since if (H_1, Ψ) is a nonzero irreducible representation of B, then for $x \neq 0$ in H_1 , $\Psi(B)x$ is finite dimensional (for $\Psi(B)$ is finite dimensional). If $(u_\lambda)_\lambda$ be any approximate unit for B, then $(\Psi(u_\lambda))_\lambda$ strongly converges to I_H so $x \in [\Psi(B)x] = \Psi(B)x$. Hence $\Psi(B)x$ is a nonzero (closed) subspace of H_1 invariant for $\Psi(B)$, so by irreducibility, $\Psi(B)x = H_1$. Therefore H_1 is finite dimensional. Thus $\Psi(B) \subseteq B(H_1) = K(H_1)$). #### Ref. [Mur] G.J. Murphy, C^* -algebras and operator theory, Academic Press, 1990. ## An operator of index zero which isn't invertible. ********* Let P be a non-trivial finite-rank idempotent in B(X) (X is a Banach space), then I - P, the difference of an invertible operator and a compact operator, is Fredholm, of index ind(I) = 0, and non-invertible. ## A compact operator with no eigenvalues. ********* Let $X = C([0,1]), v : X \longrightarrow X$ be the Volterra operator $v(f)(x) = \int_0^x f(t)dt$. If S is the closed unit ball of X, then v(S) is equicontinuous and
pointwise-bounded, hence by the Arzela-Ascoli theorem, v is compact. If for some $\lambda \in \mathcal{C}$ and $f \neq 0$ in X, $vf = \lambda f$, then $f(x) = \lambda f'(x)$. So $\lambda \neq 0$ and $\ln f(x) = \frac{x}{\lambda} + c$ for some $c \in \mathcal{R}$. Hence $f(x) = f(0)e^{\frac{x}{\lambda}} = 0e^{\frac{x}{\lambda}} = 0$, a contradiction. v has then no eigenvalue. A week-operator closed subalgebra B of bounded operators on a Hilbert space H such that $B \neq B$, where B denotes the doubel commutant of B. ********** Let H be a Hilbert space of dimension greater than $1, \xi$ be a unit vector in H and B be the subalgebra of B(H) consisting of those operators for which ξ is an eigenvector. Let P be the projection with range $[\xi]$ (If $K \subseteq H$, we denote the closed linear span of K by [K]). Then $T \in B$ iff PTP = TP. B(H) with weak-operator topology is Hausdorff and the mappings $T \longrightarrow PTP$ and $T \longrightarrow TP$ are weak-operator continuous, hence T is weak-operator closed in T. Choose a unit vector $\eta \in H$ orthogonal to ξ . Suppose that Q is the projection onto $[\{\xi,\eta\}]$ and S is the operator defined by $S\eta = \xi, S\xi = 0$ and S(I-Q) = 0. Then P,Q and S are in B. Thus if $T' \in B'$ (the commutant of B), then ξ and η are eigenvectors for T', say $T'\xi = \alpha\xi$ and $T'\eta = \beta\eta$. Since $T'S = ST', \beta\xi = \beta S\eta = ST'\eta = T'\xi = \alpha\xi$ and $\alpha = \beta$. But η is an arbitrary element orthogonal to ξ ; therefore $T' = \alpha I$. Thus $B' = \{\alpha I; \alpha \in \mathcal{C}\}$. (Here I denotes the identity operator on H.) A unitary operator U acting on a Hilbert space whose spectrum is $C = \{z \in \mathcal{C}; |z| = 1\}.$ *********** If H is a separable infinite dimensional Hilbert space with an orthogonal basis $(\xi_n)_{n\in\mathcal{Z}}$, we define $U\xi_n=\xi_{n+1}$. Then U is isometric and surjective, so it is a unitary operator. By Lemma 3.2.13 of [K&R1], $sp(U)\subseteq C$. If $\lambda\in C$ and $x_n=(2n+1)^{\frac{-1}{2}}\sum_{k=-n}^n\lambda^{-k}\xi_k$, then $\|\xi_n\|=1$ and $\|(U-\lambda I)x_n\|=(2n+1)^{\frac{-1}{2}}\|\sum_{k=-n}^n\lambda^{-k}\xi_{k+1}-\sum_{k=-n}^n\lambda^{-(k-1)}\xi_k\|=(2n+1)^{\frac{-1}{2}}\|\lambda^{-n}\xi_{n+1}-\lambda^{n+1}\xi_{-n}\|=2^{\frac{1}{2}}(2n+1)^{\frac{-1}{2}}\to 0$. Therefore by the same lemma, $\lambda \in sp(U)$. Thus sp(U) = C. #### Ref. [K&R1] R.V. Kadison and J.R. Ringrose, Fundamental of the theory of Operator Algebras (I), Acad. Press, 1983. ### An unbounded symmetric operator on an inner product space. ********* Suppose that H is the subspace of l^2 consisting of all sequences (ζ_n) with $\zeta_n=0$ for all sufficiently larg n. H is not complete (Since (a_n) where $a_n=(1,\frac{1}{2},\cdots,\frac{1}{n},0,0,\cdots)_{n\in\mathcal{N}}$ is a Cauchy divergent sequence in H). Let T denote the linear mapping $(\zeta_n)\mapsto (n\zeta_n)$ on H. T is symmetric, for $< T((\zeta_n)), (\eta_n)>=\sum_{n=1}^{\infty}n\zeta_n\overline{\eta_n}=<(\zeta_n), T((\eta_n))>$. T is unbounded since if (ξ_n) is the orthonormal basis for l^2 , for each $n,\xi_n\in H, \parallel \xi_n\parallel=1$ and $\parallel T\xi_n\parallel=n$. Two selfadjoint operators T and S on a Hilbert space such that sp(ST) is not a subset of \mathcal{R} . ********** Consider $$S = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), T = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$ belonging to $B(\mathcal{C}^2)$. Then S and T are Hermetian, but $sp(ST) = \{i, -i\}$ which is not a subset of \mathcal{R} . Two Hermetian operators T and S on a Hilbert space such that $S \ge 0$ and $-S \le T \le S$ but not $|T| \le S$. ********** Let $$S = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & \sqrt{2} \\ 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \sqrt{2} & \sqrt{2} \end{pmatrix} \ge 0, T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$ (S and T belong to $B(\mathcal{C}^2)$.) Then $$S - T = \begin{pmatrix} \sqrt{2} & 0 \\ \sqrt{2} & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2} & \sqrt{2} \\ 0 & 1 \end{pmatrix} \ge 0, S + T = \begin{pmatrix} 2 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} \ge 0$$ and so $$-S \leq T \leq S$$, but $S - |T| = \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}$ and $\langle (S - |T|)\xi, \xi \rangle = -1$ where $$\xi = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$, hence S dosen't majorize $|T|$. A selfadjoint operator $T \neq 0$ on a Hilbert space such that T is neither positive nor negative. ********* Consider $$T = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$ belonging to $B(\mathcal{C}^2), \xi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\eta = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Then $\langle T\xi, \xi \rangle = -1$ and $\langle T\eta, \eta \rangle = 1$. Hence the selfadjoint operator T is neither positive nor negative. A bounded operator on a Hilbert space which has no square root. ********* Suppose that T is the operator $T(x_1, x_2, \cdots) = (x_2, x_3, \cdots)$ on l^2 (in fact T is the adjoint of the unilateral shift operator). If T has a square root S, then $S^2 = T$ and $KerS \subseteq KerT = \mathcal{C}\xi_1$ in which $\xi_1 = (1, 0, 0, \cdots)$. Since T is not one to one we conclude that S is not one to one. So that $KerS = \mathcal{C}\xi_1$. T is surjective, hence S is onto. So there exists an element η such that $S\eta = \xi_1$. Since $T\eta = S^2\eta = S\xi_1 = 0$, we have $\eta = \lambda \xi_1$ for some $\lambda \in \mathcal{C}$ and hence $\xi_1 = S\eta = \lambda S\xi_1 = 0$, a contradiction. **Comment.** There is an open subset of L(H) consisting of invertible operators with no square roots. ### Ref. J.B. Conway and B.B. Morrel, Roots and logarithms of bounded operators on Hilbert spaces, J. Funct Anal, 70(1987), 171-193. A bounded increasing sequence of self-adjoint operators on a Hilbert space which is not uniformly convergent. ********** Assuming $(\xi_n)_{n\in\mathcal{N}}$ as an orthonormal basis for a separable infinite dimensional Hilbert space H, say l^2 . Denote the linear span of $\{\xi_1, \xi_2, \dots, \xi_n\}$ by Y_n . Let P_n be the projection onto the closed subspace Y_n . If m < n, then $Y_m \subset Y_n$ and so $0 < P_m < P_n$. Moreover $P_n - P_m$ is a projection and so $\|P_n - P_m\| = 1$ whenever $n \neq m$. Therefore (P_n) is an increasing sequence of self-adjoint operators which is not even a Cauchy sequence in uniform topology on B(H). Given a compact subset K of C, there exists a bounded operator T on a Hilbert space such that sp(T) = K and the set of eigenvalues of T is dense in K. ********** Suppose that $H=l^2$, (e_n) is the standard orthonormal basis for H and (λ_n) is a dense sequence in K. Set $T(\sum_{n=1}^{\infty}\alpha_ne_n)=\sum_{n=1}^{\infty}\lambda_n\alpha_ne_n$ where $(\alpha_n)\in l^2$. Obviously $K\subseteq sp(T)$. If $\lambda\notin K$, then $\inf\{|\lambda-\mu|;\mu\in K\}>0$ and so $S(\sum_{n=1}^{\infty}\alpha_ne_n)=\sum_{n=1}^{\infty}(\lambda-\lambda_n)^{-1}\alpha_ne_n$ is a well-defined operator on H. S is the inverse of $\lambda I-T$. Therefore $\lambda\notin sp(T)$. Thus K=sp(T). For every n, $Te_n = \lambda_n e_n$. In fact $\{\lambda_1, \lambda_2, \cdots\}$ is the set of all eigenvalues of T that is dense in sp(T). Operators of arbitrary large norms that are bounded by 1 on a given basis of a separable infinite dimensional Hilbert space H. ********** Let (ξ_n) be an orthonormal basis for H. For $k \in \mathcal{N}$, define T_k on H by $T_k \eta = \langle \eta, \xi_1 + \xi_2 + \dots + \xi_k \rangle \xi_1$. Then $$T_k \xi_n = \begin{cases} \xi_1 & n \le k \\ 0 & n > k \end{cases}$$ Hence $||T_k\xi_n|| \le 1(n \in \mathcal{N})$. On the other hand $T_k^*\eta = <\eta, \xi_1>(\xi_1+\cdots+\xi_k)$ $(\eta \in H)$; therefore $||T_k|| = ||T_k^*|| \ge ||T_k^*\xi_1|| = ||\xi_1+\cdots+\xi_k|| = \sqrt{k}$. Given a compact subset K of \mathcal{C} such that $\overline{K^0}=K$, there exists an operator T acting on a Hilbert space H such that sp(T)=K and T has no eigenvalue. ********** Let $H = L^2(K)$ in which K is equipped with the Lebesgue measure m on \mathbb{R}^2 . Define T on H as the following: $$(Tf)(\mu) = \mu f(\mu); \ \mu \in K, f \in H.$$ If $\lambda \notin K$, then $\sup\{|\lambda - \mu|^{-1}; \mu \in K\} < \infty$ and so we can define an operator S on H by $(Sf)(\mu) = (\lambda - \mu)^{-1}f(\mu); f \in H, \mu \in K$. Hence $S(T - \lambda I) = (T - \lambda I)S = I$ so that $\lambda \notin sp(T)$. If $\lambda \in K$, $(\lambda I - T)^{-1} \in B(H)$ and f denotes the characteristic function of $\{\mu; |\lambda - \mu| < \epsilon\}$ multiplied by $m(\{\mu; |\lambda - \mu| < \epsilon\})^{-1/2}$, then $$1 = || f ||_{2} \le || (\lambda I - T)^{-1} || || (\lambda I - T) f ||_{2}$$ $$= || (\lambda I - T)^{-1} || \int_{K} (\lambda - \mu) f(\mu) dm(\mu) \le || (\lambda I - T)^{-1} || \epsilon,$$ a contradiction. Hence $(\lambda I - T)$ is not invertible. So $\lambda \in sp(T)$. It follows that sp(T) = K. In addition, if $Tf = \alpha f$ for some $\alpha \in \mathcal{C}$, then for all $\mu \in K$, $\mu f(\mu) = \alpha f(\mu)$. So f = 0 almost every where. Thus T has no eigenvalue. An operator T on a Hilbert space such that the set eig(T) of all eigenvalues of T is empty but $sp(T) \neq \emptyset$. ********** The unilateral shift operator on the Hilbert space l^2 (with its standard orthonormal basis (e_n)) given by $Te_n = e_{n+1}, n \in \mathcal{N}$, has no eigenvalue; since obviously $0 \notin eig(T)$ and if $0 \neq \lambda \in eig(T)$ and $Tx = \lambda x$ for some $x = \sum_{n=1}^{\infty} \alpha_n e_n \neq 0$, then $\sum_{n=1}^{\infty} \alpha_n e_{n+1} = \sum_{n=1}^{\infty} \lambda \alpha_n e_n$ and hence $\alpha_n = 0$ for all n, i.e. x = 0, a contradiction. Next observe that $0 \in sp(T)$; otherwise T would be invertible so $T(T^{-1}(e_1)) = e_1$, but $<
T(T^{-1}e_1), e_1 > = 0$ by the definition of T, that is impossible. A Hilbert space H such that on B(H) - (i) the involution isn't continuous with respect to the strong operator topology; - (ii) the weak operator topology and the strong operator topology are different; - (iii) the operator norm is not continuous with respect to the strong operator topology and the weak operator topology; - (iv) the weak operator topology and the strong operator topology aren't metrizable; - (v) the operation multiplication is continuous in neither weak nor strong operator topology. ********** Let $H=l^2$ and (e_n) be the standard orthonormal basis for H (note that for all $x \in H$, $x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n$). Set $T_n = e_1 \overline{\otimes} e_n$. Then $T_n^* = e_n \overline{\otimes} e_1$ (i) $\lim_n \|T_n x\| = \lim_n \|\langle x, e_n \rangle e_1\| = \lim_n |\langle x, e_n \rangle| = 0$. So $T_n \longrightarrow 0$ in the strong operator topology. But $\lim_n \|T_n^* e_1\| = \lim_n \|e_n\| = 1$, hence T_n^* dosen't converge to zero in the strong operator topology. So $T \longrightarrow T^*$ is not continuous in the strong operator topology. - (ii) The involution is continuous with respect to the weak operator topology (since $|\langle Tx,y\rangle| = |\langle T^*y,x\rangle|$). Hence (i) implies that the weak operator topology and the strong operator topology don't coincide on B(H). - (iii) $||T_n|| = ||e_1|| ||e_n|| = 1$, and by (i) $T_n \longrightarrow 0$ in the strong operator topology. Therefore the operator norm is not continuous on B(H). - (iv) Let $\Delta = \{n^{\frac{1}{2}}T_n; n \in \mathcal{N}\}$. For each neighborhood $U(0, x_1, \dots, x_m, \epsilon)$ of 0 in the strong operator topology, with $x_k = \sum_{n=1}^{\infty} \alpha_k^n e_n$, $|| n^{\frac{1}{2}} T_n x_k || = n^{\frac{1}{2}} |\alpha_k^n|$. But for every $1 \leq k \leq m$, $\sum_{n=1}^{\infty} |\alpha_k^n|^2 < \infty$, hence for each ϵ there exists a natural number n such that $n^{\frac{1}{2}} |\alpha_k^n| < \epsilon$. So that 0 belongs to the strong closure of Δ . It follows from the principle of uniform boundedness and $||\sqrt{n}T_n|| = \sqrt{n}$ that any sequence in Δ doesn't converge to 0 in the strong operator topology. Hence the strong operator is not metrizable. Similarly one can show that the weak operator topology is not metrizable. (v) Let Λ be the set of all (n, U) in which $n \in \mathcal{N}$ and U is a neighborhood of 0 in the strong operator topology on B(H). Then Λ with the following relation is a directed set: $$(m, U) \leq (m', U') \Leftrightarrow (m \leq m' \text{ and } U \supseteq U')$$ Suppose that S is the unilateral shift operator on (e_n) , i.e. $S(\sum_{k=1}^{\infty} \alpha_k e_k) =$ $$\sum_{k=1}^{\infty} \alpha_k e_{k+1}.$$ Obviously $S^*(\sum_{k=1}^{\infty} \alpha_k e_k) = \sum_{k=1}^{\infty} \alpha_{k+1} e_k$. If $\lambda = (m_{\lambda}, U_{\lambda}) \in \Lambda, \lim_n \| S^{n^*} x \| =$ $m_{\lambda} \lim_{n} (\sum_{k=1}^{\infty} |\alpha_{k+n}|^2)^{\frac{1}{2}} \longrightarrow 0$ whenever $x = \sum_{k=1}^{\infty} \alpha_k e_k \in H$. Therefore $(m_{\lambda} S^{n^*})_{n \in \mathcal{N}}$ converges to 0 in the strong operator topology. So that there exists a positive integer number n_{λ} such that $m_{\lambda} S^{n_{\lambda}^*} \in U_{\lambda}$. Set $T_{\lambda} = m_{\lambda} S^{n_{\lambda}^*}$ and $R_{\lambda} = \frac{1}{m_{\lambda}} S^{n_{\lambda}}$. Then $\lim_{\lambda} ||R_{\lambda}|| = \lim_{\lambda} \frac{1}{m_{\lambda}} = 0$, so that R_{λ} converges to 0 in the norm topology. If U be a strong neighborhood of 0 and $\lambda_0 = (1, U)$, then $T_{\lambda_0} \in U_{\lambda_0}$ and for every $\lambda \geq \lambda_0, T_{\lambda} \in U_{\lambda} \subseteq U_{\lambda_0}$. therefore $(T_{\lambda})_{\lambda \in \Lambda}$ converges to 0 in the strong operator topology. But $T_{\lambda}R_{\lambda} = 1$ for all λ , hence if the multiplication is jointly continuous in either the weak or the strong operator topology, then $1 = \lim_{\lambda} T_{\lambda} R_{\lambda} = \lim_{\lambda} T_{\lambda} \lim_{\lambda} R_{\lambda} = 0, \text{ a contradiction.}$ **Comment.** The statements are true on any infinite dimensional Hilbert space. # Ref. [Mur] G.J. Murphy, C^* -algebras and operator theory, Academic Press, 1990. A sequence of nilpotent operators on H which converges with respect to the norm topology on B(H) to an operator which is not topologically nilpotent. ********** This example is due to Kakutani (cf. [Ric, p. 282]). Let H be a separable Hilbert space with orthonormal basis $(f_m)_{m \in \mathcal{N}}$. Define $\alpha_m = e^{-k}$ for $m = 2^k(2l+1)$, $k, l = 0, 1, \cdots$ and also the operator T by $Tf_m = \alpha_m f_{m+1}, m \in \mathcal{N}$. Then $||T|| = \sup_{m \in \mathcal{N}} |\alpha_m|, T^n f_m = \alpha_m \alpha_{m+1} \cdots \alpha_{m+n-1} f_{m+n}$ and so $||T^n|| = \sup_{m \in \mathcal{N}} (\alpha_m \alpha_{m+1} \cdots \alpha_{m+n-1})$. Moreover, by the definition of the α_m , we have $\alpha_1 \alpha_2 \cdots \alpha_{2^{t-1}} = \prod_{j=1}^{t-1} exp(-j2^{t-j-1})$. Therefore $$(\alpha_1\alpha_2\cdots\alpha_{2^t-1})^{\frac{1}{2^{t-1}}} > (\prod_{j=1}^{t-1}exp[\frac{-j}{2^{j+1}}])^2$$ and if $\sigma = \sum_{j=1}^{\infty}\frac{j}{2^{j+1}}$, then $e^{-2\sigma} \leq \lim_n \|T^n\|^{\frac{1}{n}}$. So T is not topologically nilpotent. Next define the operator T_k by $$T_k f_m = \begin{cases} 0 & m = 2^k (2l+1), l = 0, 1, \cdots \\ \alpha_m f_{m+1} & \text{otherwise} \end{cases}$$ Then T_k is nilpotent. But $$(T - T_k)f_m = \begin{cases} e^{-k} f_{m+1} & m = 2^k (2l+1), l = 0, 1, \dots \\ 0 & \text{otherwise} \end{cases}$$ Thus $||T_k - T|| = e^{-k}$, hence $\lim_k T_k = T$ in the norm topology on B(H). #### Ref. [Ric] C.E. Rickart, General theory of Banach algebras, Princeton, Van Nastrand, 1960. - (a) A Banach space X and an operator $T \in B(X)$ having no non-trivial invariant subspace. - (b) A Banach space X and an operator $T \in B(X)$ having a nontrivial invariant subspace. ********** - (a) C.J. Read showed that if $X = l^1$ then there exists a bounded operator on l^1 having no nontrivial invariant subspace. - (cf. [C.J. Read, A solution to the invariant subspace problem, Bull. London Math. Soc., 16(1984), 337-401.] - (b) If $X = \mathcal{C}^n(n > 1)$, $T \in B(\mathcal{C}^n) \mathcal{C}I$ is an arbitrary operator and $\alpha \in \mathcal{C}$ is an eigenvalue of T, then $M = Ker(T \alpha I)$ is a nontrivial subspace of X and $TM \subseteq M$. (I is the identity operator on \mathcal{C}^n) - (a) An injective operator on a Hilbert space H such that the range of T, R(T), isn't dense in H. - (b) An operator S such that S is surjective but $Ker(S) \neq \{0\}$. ********** Let H be a separable Hilbert space with the standard orthonormal basis (e_n) . - (a) The unilateral shift operator $T(\alpha_1, \alpha_2, \cdots) = (0, \alpha_1, \alpha_2, \cdots)$ on H is injective and the closure of its range is the closed linear span $\{e_2, e_3, \cdots\}$ which doesn't contain e_1 . - (b) If $S = T^*$, then $S(\alpha_1, \alpha_2, \dots) = (\alpha_2, \alpha_3, \dots)$. So S is surjective but $Ker(S) \neq \{0\}$, since it is the linear span of e_1 . Two positive operators $T \leq S$ acting on a Hilbert sace such that S^2 does not majorize T^2 . ********** Define T and S as operators on C^2 by $T(z_1, z_2) = (z_1, 0)$ and $S(z_1, z_2) = (2z_1 + z_2, z_1 + z_2)$. Then $$sp(T) = sp(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}) = \{0, 1\} \subseteq \mathcal{R}^{\geq 0}, T^* = T, sp(S) = sp(\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}) = \{\frac{3^{\pm}\sqrt{5}}{2}\} \subseteq \mathcal{R}^{\geq 0},$$ $$S^* = S, sp(S - T) = sp(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}) = \{0, 2\} \subseteq \mathcal{R}^{\geq 0}.$$ Hence $0 \le T \le S$. But $sp(S^2 - T^2) = sp(\begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix}) = \{3^{\pm}\sqrt{10}\}$ is not a subset of $\mathcal{R}^{\ge 0}$. Therefore S^2 doesn't majorize T^2 . An unbounded operator on a Hilbert space H annihilating an orthonormal basis of H. ********** Let (e_n) be the standard orthonormal basis for the Hilbert space $H = l^2$. Extend (e_n) to a Hamel basis β for l^2 . Choose $f \in \beta$ distinct to the e_n and define then the linear mapping $T: H \longrightarrow H$ by $$T(g) = \begin{cases} 1 & g = f \\ 0 & g \in \beta \setminus \{f\} \end{cases}$$ Then $T(e_n) = 0$ and T is unbounded (otherwise, $1 = T(f) = \sum_{n=1}^{\infty} \langle f, e_n \rangle$ $T(e_n) = 0$. An operator U on a Hilbert space, other than I, such that $sp(U) = \{1\}$ and $\parallel U \parallel = 1$. *********** Suppose that $H=L^2(0,1)$ with respect to the Lebesgue measure and $(Tf)(x)=\int_0^x f(t)dt$. It follows from BA15.DVI, sp(T)=0, so that $sp(I+T)=\{1\}$. Hence $U=(I+T)^{-1}\neq I$ is well-defined, moreover $sp(U)=\{\lambda^{-1};\lambda\in sp(I+T)\}=\{1\}$. Therefore $$1 = r(U) \le \parallel U \parallel.$$ But $||U|| \le 1$, since $$\parallel U^{-1}\xi\parallel^2=\parallel (I+T)\xi\parallel^2=\parallel f\parallel^2+<(T+T^*)\xi,\xi>+\parallel T\xi\parallel^2\geq\parallel f\parallel^2.$$ (Note that $T+T^*$ is a projection onto the space of constant functions, since $(T^*f)(t)=\int_t^1 f(t)dt$.) Thus $\parallel U \parallel = 1$. A unital commutative Banach algebra with a maximal ideal M of codimension 1 and a Banach A-module X such that $H^2(A,X)=0$ but $H^2(M,X)\neq 0$. ********** Let $A = \mathcal{C}^2$ with the product (a,b)(a',b') = (aa',ab'+a'b). $M = \{0\} \oplus \mathcal{C}$, being the kernel of the character $\phi: A \longrightarrow \mathcal{C}$ defined by $\phi(z,w) = z$, is a maximal ideal of codimension 1. Regard $X = \mathcal{C}$ as an annihilator A-module. By [B&D&L, Proposition 2.2], $H^2(A,X) = \{0\}$. If $\mu((0,w_1),(0,w_2)) = w_1w_2$, then $\mu \in Z^2(M,X)$, but $\mu \notin N^2(M,X)$ (otherwise $w_1w_2 =
\mu((0,w_1),(0,w_2)) = (\delta^1\lambda)((0,w_1),(0,w_2)) = (0,w_1).\lambda((0,w_2)) - \lambda((0,w_1).(0,w_2)) + \lambda(0,w_1).(0,w_2) = 0 - \lambda(0) + 0 = 0$, for all $w_1, w_2 \in \mathcal{C}$, a contradiction). Thus $H^2(M,X) \neq 0$. ### Ref. [B&D&L] W.G. Bode, H.G. Dales and Z. Lykova, Algebraic and strany splittings of extensions of Banach algebras, mem. Amer. Math. Soc. 137 (1999). A non-split short complex of Banach spaces whose dual splits. ********** $0 \longrightarrow c_0 \xrightarrow{i} l^{\infty} \xrightarrow{\pi} \frac{l^{\infty}}{c_0} \longrightarrow 0$ is a short exact complex of Banach spaces which doesn't split since c_0 is not complemented in l^{∞} . Its dual complex $0 \longrightarrow (\frac{l^{\infty}}{c_0})^{\#} \xrightarrow{\pi^{\#}} (l^{\infty})^{\#} = (l^1)^{\#\#} \xrightarrow{i^{\#}} c_0^{\#} = l^1 \longrightarrow 0$ splits. Notice that the later complex is exact and the canonical embedding $l^1 \longrightarrow (l^1)^{\#\#}$ is a right inverse to $i^{\#}$. A weakly amenable commutative Banach algebra which is not amenable. *********** $l^p, 1 \leq p < \infty$, is closed linear span of its idempotents $\zeta_n(k) = \delta_{nk}, n, k \in \mathcal{N}$. Suppose that e is an idempotent of l^p , X is a symmetric Banach l^p -module, and $D: A \longrightarrow X$ is a continuous derivation. Then $De = D(e^2) = 2eD(e)$ and so De = (De - 2eDe) - 2e(De - 2eDe) = 0. It follows that D = 0. So that l^p is weakly amenable. But $l^p, 1 \leq p < \infty$ has no bounded approximate identity (see ba41.dvi in the case p = 2), so that A is not amenable (cf. [B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972)]). ## A derivation on an algebra which is not inner. ********* Suppose that A is an algebra with unit 1 and a is an element of A which is not algebraic (i.e. $\{1, a, a^2, \dots\}$ isn't a linearly independent set). Let B be the subalgebra of A generated by 1 and a. Define a mapping D of B into B by $D(\lambda_0 + \lambda_1 a + \dots + \lambda_n a^n) = \lambda_1 + 2\lambda_2 a + \dots + n\lambda_n a^{n-1}$. Obviously D is a derivation on B and isn't inner, since B is commutative and $D \neq 0$. # A closed unbounded *-derivation on a C^* -algebra A. ********** Suppose that A = C([0,1]) and $\delta(f) = (\frac{d}{dt})f(t) = f'(t)$ with the domain $D(\delta) = C^1([0,1])$ where $C^1([0,1])$ is the algebra of all continuously differentiable functions on [0,1]. $\parallel \delta(x^n) \parallel = n = n \parallel x^n \parallel$ implies that δ is an unbounded derivation from $D(\delta)$ into A. If $f_n \in D(\delta), f_n \longrightarrow f \in A$, and $\delta(f_n) \longrightarrow g$, then $f'_n \longrightarrow g$ uniformly on [0,1] and $f_n(0) \longrightarrow f(0)$. So g is differentiable and f' = g. Therefore $f \in D(\delta)$ and $\delta(f) = g$. # A Banach algebra for which every linear operator is a derivation. ********* Suppose that A is an arbitrary Banach space. Defining $x.y = 0(x, y \in E)$, E is a Banach algebra. Obviously every linear operator is a derivation. ### A non-closable unbounded *-derivation. ********** Let X be the Cantor set of [0,1]. It is well-known that X is a perfect compact subset of [0,1]. By Tietze's theorem, $C(X) = \{f|_X; f \in C([0,1])\}$. Define δ on $D(\delta) = \{f|_X; f \in C^1([0,1])\}$ by $\delta(f|_X) = f'|_X$. δ is a well-defined derivation (if $f|_X = 0$, then for each $x_0 \in X$ there exists a sequence $\{x_n\}$ in $X - \{x_0\}$ converging to x_0 . So $f'(x_0) = \lim_n \frac{f(x_n) - f(x_0)}{x_n - x_0} = 0$, therefore $f'|_X = 0$). But δ is not identically zero so by [Sak2, Proposition 3.2.1] δ cannot be extended to a closed derivation in C(X). So that δ isn't closable. This example is due to O.Bratteli and D.W. Robinson ([cf. Sak2, P.59]). #### Ref. [Sak2] S. Sakai, Operator algebras in dynamical systems, Cambridge Univ. Press, 1991.