Épreuve: MATHÉMATIQUES II

Option TA

Un espace affine euclidien de dimension 3 est rapporté à un repère orthonormé $(O; \underline{i}, \underline{j}, \underline{k})$ dont les axes $(O; \underline{i})$, $(O; \underline{k})$, et les plans $(O; \underline{i}, \underline{j})$, $(O; \underline{j}, \underline{k})$, $(O; \underline{k}, \underline{i})$ sont plus simplement notés respectivement Ox, Oy, Oz, xOy, yOz, zOx. On considère la surface S décrite par les points de l'espace $M(t,\lambda)$ de coordonnées

$$\begin{cases} x = a\cos t - \lambda \cos t \sin t \\ y = a\sin t + \lambda \cos^2 t \\ z = \lambda \end{cases}$$

où chacun des deux paramètres t et λ varie dans R et où a est un réel strictement positif donné.

Partie I - Éléments de symétrie de S

- I.A Comparer les points $M(t.\lambda)$ et $M(\pi + t.-\lambda)$. En déduire une première symétrie conservant S.
- I.B Comparer les points $M(t,\lambda)$ et $M(\pi-t,\lambda)$. En déduire une deuxième symétrie conservant S.
- I.C Mettre en évidence une troisième symétrie conservant S:

Partie II - Intersections de S avec les plans du repère

- II.A Préciser l'intersection de S avec le plan xOy.
- II.B Montrer que l'intersection de S avec le plan yOz est la réunion de deux droites et de deux demi-droites que l'on représentera avec précision sur un dessin.

II.C -

II.C.1) Montrer que l'intersection de S avec le plan zOx est la réunion des deux courbes

$$L_1 \qquad \left(\begin{array}{c} y = 0 \\ z = \frac{x}{a} \sqrt{x^2 - a^2} \end{array} \right)$$

$$L_2 \qquad \left(\begin{array}{c} y = 0 \\ z = -\frac{x}{a} \sqrt{x^2 - a} \end{array} \right)$$

- II.C.2) Comment L_1 , se déduit-elle de L_1 ?
- II.C.3) Tracer L_1 et L_2 dans le plan zOx. On précisera les tangentes aux points d'abscisses a et -a, les branches infinies et les points d'inflexion.

Partie III - Courbes coordonnées de S

- III.A Courbes $\lambda' = \lambda_0$ où λ_0 est un réel donné.
- III.A.1) Que peut-on dire, sans aucun calcul, d'une telle courbe C_{λ} ?
- III.A.2) Que devient C_{λ_0} quand $\lambda_0 = 0$?
- III.A.3) Tracer soigneusement dans le plan xOy la projection sur ce plan de C_{λ_0} quand $\lambda_0 = a$. On précisera notamment les éléments de symétrie et la tangente au point singulier.
- III.A.4) Calculer l'aire intérieure à C_{λ} quand $\lambda_0 = a$.
- III.B Courbes $t = t_0$ où t_0 est un réel donné.
- III.B.1) Montrer qu'une telle courbe est une droite D_{t_0} dont on donnera un vecteur directeur V_0 et le point d'intersection M_0 avec le plan xOy.
- III.B.2) Préciser la droite D_{t_n} dans chacun des quatre cas suivants :

$$t_0 = 0 \pmod{2\pi}$$
, $t_0 = \pi \pmod{2\pi}$, $t_0 = \frac{\pi}{2} \pmod{2\pi}$, $t_0 = -\frac{\pi}{2} \pmod{2\pi}$

III.B.3) Que peut-on dire, quand t_0 varie, de la projection orthogonale D_{t_0} de D_{t_0} sur le plan xOy par rapport au cercle de centre O et de rayon a de ce plan?

MATHÉMATIQUES II

III.B.4) Pour $t_0 \neq 0 \pmod{\pi/2}$, quel est le point d'intersection N_0 de D_{t_0} avec le plan yOz? Quel est l'ensemble décrit par N_0 quand t_0 varie?

III.B.5) Pour $t_0 \neq 0 \pmod{\pi/2}$, calculer l'aire \mathscr{A}_0 du triangle ON_0P_0 où P_0 est la projection orthogonale de M_0 sur le plan yOz. Que peut-on dire de \mathscr{A}_0 quand t_0 varie?

III.B.6) Déterminer dans le plan yOz l'enveloppe E de la projection orthogonale $D^n_{t_0}$ de D_{t_0} sur ce plan. On donnera une équation cartésienne de E et on indiquera sa nature géométrique.

Partie IV - Définition géométrique de S

IV.A -

IV.A.1) Que peut-on dire de la position de D_{t_0} par rapport au cylindre Γ d'équation $x^2 + y^2 = a^2$?

IV.A.2) Que peut-on dire de D_{t_a} par rapport à la droite

$$\Delta \begin{pmatrix} x = 0 \\ y = z \end{pmatrix}?$$

IV.A.3) En déduire une définition géométrique simple de S.

IV.B - Dessiner soigneusement en perspective la portion S' de S comprise entre les plans d'équations z = 0 et z = a.

IV.C - Calculer le volume de la région de l'espace intérieure à S, et comprise entre les plans d'équations z=0 et z=a.

••• FIN •••