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262 ; CRAIG H. COLLINSG

The benefits provided by the greedy alzorithim for Heisenberg Boxes of
higher order have not veor been quantified. w cannot say whether the greedy
i e sabe algorithn estublishes the
upper bound for non-redundant drawer mmr:‘mf methoeds. Trowill be interesting 1,
determine whether the trequency distributions vhiained via the greedy algorithn
share any of the genera! trends and singular features associated with the safe

algoritdum is minimal. but [ do believe ¢

algorithn,

For mow, uncertainty prevaiis.

al trouble. Fred.” said his classmmate. Tom. “We have o quiz in ess

van howor in our Calouiation course, and | m ust dropped myv caleularor in the
- ﬁ antically punching at the rm he went on. “Most of the Kevs are
fammed. Fean’t get any of the digit kevs above 4 1o work, Square root
works . leUs see . . . ouch, the Pi _.av.. momwm; work. and we are going 10 need

that value for sure. We have to compute the ureas of some circles on this quiz, !
know. The arithmeric kevs are QK. Let’s see. what can ! do for Pi?7

“Isee, You can't key in anything bevond 3.141 . .. the usual approximation.
22 7woen't do ... what's that other one? Oh, ves, 355/113. That won’t do,
since your ‘Y kev is stuck., Oh, of course, how about dxarctant 1?7

Tom 1ried it. “No. the Inverse key won't work, Looks like the g functions
are fouled, too. Oh, boy, this is getting desperate.”

“Well, if you can manage to get the radius of the circle in by adding nummbers
with small digits, | guess vou could get by if you had o good way to put Plin.

Let me try something on my calcularor.”

In a few minutes Fred had come up with 1 way to calculate the value of Pi on
Tom’s calculator to surprising accuracy with just ten keystrokes. What were the
kevstrokes he used?

The znswer to Tom’s plight is the sequence of operations

2143/22 - Sqrt Sqgrt
{or 2143 Enter 22 / Sgrt Sqrt on an RPN calculator),

This formula produces the value 3.141592653-) with an error of about
1.0x10%*{(-9), There is also a simitar formula to approximate e, namely

e = 25/43x(Sqrt(10)-1)**2

which uses only the digits G-5 and produces an ervor of about 3x10%*(-&),

~ Lyt D, Yarbrough
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Martin Gardrer, in his February 1960 column of Mathematicel Games [1].
asked for z dissection of the square inte eight acute-angled triangles. Further-
more, he wondered whether the dissection could be accomplished with fewer
rriangles. The following month [2]. a solution was given which is essentially
the same as that of Figure 1. The same problem recurs in Gardner [3],
Coexeter 4], Honsherger [5}, and in the Monthly [6].

That the dissection of Figure 1 is unique {up to small periubations of the
twe interior points) and implicitly that eight is the smallest number of triangies
possible is proven by Lindgren [7]. It should be noted that this dissection into
eight triangles is a proper triangulation in that no interior vertex lies on the side
of another mriangle.

The question arises as to whether dissections of the sguare are possihle intn
nacute angled triangies where # is greater than eight. Martin Gardner reported
having & nine-triangle dissection [1], and in Hoggatt and Jamison 8], they
show how to generate dissections for # 2 10, However, in both cases all
dissections are not proper triangulations. Gardner’s nine-triangle dissection
apparently has not been published before, and we show it in Figure 2

In this text we will thus examine the problem of triangulating the square into
acuted-angled triangles. By a proper triangulation we mean a subdivision of the
square and its interior into non-overlapping triangles in such a way that any two
distinct triangles either be disjoint, have a single vertex in common, or have one
entire edge in common. And by an interior vertex we mean a vertex (of a
triangle) which lies inside the square but not en its boundary. Henceforth,
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L [ . . .
Figure 1. - Figure 2.
unless otherwise noted. we will use the term tiangulation 1o mean proper
triarigulation.

We hegin with a proof, alternative to that of {7] . of the minimality-
uniqueness of eight. Then we show there is no triangulation into nine triangles!
And finzlly we demonstrate that there is 2 triangulation of the square into 72
acute-angled triangles for all # greater thun or equal to ten.

REMARK: If an acute-angled triangle 7 1s contained in a right-angted triangle R
then the hypotenuse of R cannot be a side of 7.

PROPOSITION: In any triangulation of the square into acute-angled triungles
there exist at least two interior vertices. Hence there is no triangulation of the
square with fewer than eight acute-angled triangles.

PROOF: We suppose there exists a triangulation of the square, KLAN, with
no interior vertex. Now the right angle at & must be cut by st least one edge,
KK’ of the triangulation, and furthermore, £, since it cannot be an interior
vertex, must lie on the houndary of the square. However, due to the remark
above, this is a contradiction - KK’ cannot be the side of the triangle in the
trianguiation,

Next we consider the case of a triangulation with exactly one interior vertex,
P In order to respect the fact that each triangle is acute, P must be the vertex of
at least five triangles and hence the end point of at least five different sides. But
so that a second interior vertex not be created, these edges must all terminate on
the boundary of the square. There being only four comers of the square one of
these five edges must end, at P’, somewhere on the square’s boundary between
two corners, say K and L. Now at least one of the angles PP'K and PP'L, let us
say PP'Lis greater than or equal to 90° and so must be cut by a line PP such
that angle LP'P"" is less than 90°. Since P"' cannot equal £ nor can it be. by
hypothesis, another interior vertex, then either 7 is on LM or on MY These .
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two possibilities ure exciuded by the remark: the former immediatedy and the

fatter (27 on M) after a repetition of the shove argument until a right-angled

trigngle is generated. (Remember that there dre only o finite numiber of wrhngles

in the triangulation .
Thus. there ara 2t least two interior vertices. Moreover, as cach is the verrex

of at least five triangles. there are at least 2ight rriangles in anyv one triungulution,

{The mose number of triangles two vertices can share 15 twa.)

A triangulation ot the square into eight acute-angled triangles 15 illustrated
Figure 1. The points C and D are the midpoints of their respective sides; 4 and
(= *. by
B, symmertric with respect 1o CD| lie outside the four semicircles as shown.

PROPOSITION: There exists no proper triangulation of the square inte exacily
nine acute-angled triangles.

PROOF: We discuss immediately the possibilitv of there being three or imore
interior vertices. Each such vertex must be that of at least five different
triangles. Any two verrices can share at most two triangies (by being the
endpoints of the same sidey and three vertices can determine at most one
triangle. Thus even with only three vertices there are atleast 15 -6+ ] that s
10, triangles. Hence there exist exactly two interior vertices.

Should there be exactly five edges emanating trom each of these two vertices
and furthermore should these ten edges be distinct then there would be ten
triangles. On the other hand should there be an edge linking the two interior
vertices, cach siill baing the endpoint of exactly five edges, then there would
only be eight triangles.

A similar anatysis eliminates all other possible combinations of edges except
for five edges from one vertex and six {Tom the second vertex.

In this latter case eleven triangles would be generated should all of the
eleven edges be distinct. Thus, should there exist a tniangulation into nine
acute-angled triangles, there would be an edge in common between the two
interior vertices, thereby creating two triangles sharing this side. And, since
theze are no other interior vertices, the other vertices of these two triangles
must lie on the boundary of the square. Hence these two triangles separate the
square and its boundary into two disjoint regions.

Of course the five remaining sides (which emanate from the two interior
vertices) must also terminate on the boundary of the square. However as there
are only four corners and as the two regions are disjoint, one of these five edges
creates a new vertex on the boundary and at that vertex an angle greater than
or equal to 90°, Now by exactly the same argument as in the first proposition,
this would imply the existence of a third interior vertex which is thus impossible.

We have shown that ne trisngulation exists for fewer than eight triangles or
for exactly nine triangles. We now establish that 1 triangalation into #

Lingies

exists where n =& or n 2 10, In the description that follows we give the
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Figure 3. Figure 4,

caardinates of the vertices in a trianguiation of the unit square whose bottom
left-hand corner is the origin,
FIGURE ! (8 Triangles)

d={la-g 0, B=(ta, i)C Tyand D={%,0), whereg >0 is
chosen such that 4 and £ lie outside all of the semicircles.

We can choose the vertices of a triangulation into 4r + & frigngles (n 2 1), as
Follows

I weadd npoints 4, .. .. “L: to the line between 4 and B:
R
2o wereplace Cby €, ..., (, ., where
i g i
G e S
3. and Dby Dy, ..., D, where
1 2ia 1
.= ——-ag -+t -
b Am “Thi m§+$,8

FIGURE 3 (10 E&&a&

2 1 ! 1 3 1
A= LR = A ta, = |wmyﬁuAM._,mPquv,an_Mym:m

E= HI 1}. Here the value of 2 is small encugh that 8 and C lie cutside the

12
(33

larger semicircles.

FiGURE 4 ﬁ_ Him:m_mmv
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F=7 0y where ¢ is small enough,
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Figure 5. Figure 6.

The vertices in a triangulation into i+ J] mriangles(n 2 1yare A, B. C, D,

I S N S S
EFand =ty - g M TU -, gy e
W,HAM. FELHW;‘TL!W CVNHPJ "
Y3 12n 2d4n T
FIGURE 5 (13 Triangles)
P S G P N | S 1.1
A=y 7 ag B0 vm (3 +§ 2 "ag )
agdby 3 L 1 B 2, 1.1
De(g+yp-a5-70 ) E= (5 + ﬁwv:w (% +Gu8 and G = :?L
again 2 small enough,.
FIGURE 6 (14 Triangles)
PRI SN SR N & =2 1 0
mLﬁ:m,ﬁit@;BWNJR«WV?SM-FM,EV"
7
De(G-a ) = (0 0, F=01,0),6=(50,miH=(0,1),
a small.
FIGURE 7 (17 Triangles)
7 1 16 ¢t 1
= () 1 = + “ - _
A=(E B=( 0. C= (0 T4 h), D= (a3 - b, aad
E={ wlm -4, Pl b). Here z and b are botl small with ¢ much smaller than &,

To obtain g trigngulation into du + 17 triangles {n 2 1), we proceed
essentialiy the sume as was done with Figore 4.



Figure 7. Figure 8,
FIGURE 8 (18 Triangles)
= L1 S A S | R 81
&.Lu.;,_..mi_.ﬂu.i.ﬁ m.ﬁulmrb mh.“+m‘u.m:mm Arﬁmni.

& small enough.

The same procedure as in Figure 3 and Figure 7 vields triangulations with

dn + I8 rrigngles (n 22 1),

1.
3

+

tLh

o
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AFAMILY OF SIXTEENTH
ORDER MAGIC SQUARES

CHARLES W. TRIGS
San Diego, Calitornia

A family of 8**(110)!" sixteenth order magic squares composed of the first 236
pesitive integers can be generated from the 880 basic fourth order magic square
Hsted by Benson and Jacoby [1].

First, select any sixteen of the 880 squares (repetition permitted). The
sixteen chosen squares in Figure [ are ordered according to their upper left
elements, The first square of Figure 1 is square (1) in Figure 2. To each element
of the second squarz add 16 to form square {2, to each element of the third
square add 2-16 to form square (3}, and continue the process until 15+16 added
to each element of the sixreenth square forms square (16). Each of these derived
squares is magic and remains magic in eight orientations: the square itself, its
rotations through 90°, 1807, and 270°, and the mirror images of these four.

To construct sixteenth order magic squares, divide a 16-by-16 grid into
sixteen small 4-by-4 grids, thus forming a large 4-by-4 grid of grids. Label the
large 4-by-4 grid with the elements of one of the 880 basic fourth order magic
squares. In constructing the square in Figure 4, the labelling square used was the
pandiagonal square (wherein the elements of the broken diagonals, as well as
those of the rows, columns, and unbroken diagonals, sum to the magic constant}
of Figure 3,

In each small 4-by-4 grid, place the derived 4-by-4 square, in any of its eight
orientations, that has the same identification number as the small grid. That is,
proceeding from the upper left corner, in the first square of the large 4-by-4
grid, insert square (1) from Figure 2, in the second square insert square (8) from
Figure 2, in the third square insert square (13) from Figure 2, and so on. In the
square of Figure 4, the eight derived squares placed in the first two rows were
given different arbitrarily chosen orientations, as were those in the last two rows.
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