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Proof. The equation z" = 1 has at most nt solutions. On the other hand, the above
numbers, n distinct numbers, all satisfy the equation. 0
The following property of the exponential function is the basis of Fourier theory:

Theorem A.3. Let k be an integer. Then
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Proof. See Exercise A.1.1. 0

A.2  The Binomial Theorem

For natural number n and &. with 0 =k = n we define

:v B n!
ﬁ» Tk — k!

The following theorem is fundamental:

Theorem A4 (The Binomial Theorem). If n is a natural number, then

(x4 y) = M AMV.«J}L.

k=0
Proof. The proof is an casy induction and ultimately relies on the fact that

B=G2D)+CN

We now use the Binomial Theorem to prove the following theorem:
Theorem A5, Fork, v el define
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Then there is a polynomial fi(x) with rational coefficients with leading term
Kt 4 1) such that
ae(y) = fi(y).

Proof. We will prove the theorem by induction. For k — 1 we have
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Now suppose we know the theorem for every I < k. By the Binomial Theorem

k-1
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Jj=0
As a result
k41 : & k : >+_
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Consequently,
k + 1 = b |
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By the induction hypothesis the right-hand side is 4 polynominl of degree & 1 1 with
leading term y**1_ Once we observe

A»M_vu».‘._

Corollary A.6. For all natural numbers k,

the theorem follows. 0

Y-.-
a(y) = mlj. + O,

A3 The Pigeon-Hole Principle

The Pigeon-Hole Principle is the following intuitively obvious statement: 1f we
distribute n balls among m boxes, with n > m = 0, then at least one box will ¢nd
up with more than one ball. Stated differently, if we have 1 PECON (rying (o gel in m
pigeon-holes, with n = m - 0, then at least one of the pigeon-holes will have two
pigeons in it, hence the title The Pigeon-Hole Principle. The Pigeon-Hole Principle
is also known as Dirichlet’s Box Principle. Dirichlet (1834) used this principle 1o
prove a theorem about rational approximation to irrational numbers, We present thiy
theorem in Example A. 11 below. The Pigeon-Hole Principle is an extremely uselul
statement with many applications. In this appendix we give a proof of this slatement
using mathematical induction, We then give several applications. The appendix endy
with a few standard problems.

The Pigeon Hole Principle should be thought of as a statement about functions.
Let A be the setof pigeons and # the set ol pigeon - holes. Then the process of sending




pigeons to pigeon-holes is a function from A~ B The technical statement of
Pigeon-Hole Principle is the following:

Theorem A.7. Let A, B be finite sets with #A = W B, Then there are no injective
maps f: A— B.

Proof. We will prove this by induction on #B, If#B = 1,and #A = 1, itis clear thut
we cannot have an injective function f : A — B as there is only one option for the
image of the function f. Now suppose #B = k = 2 and that we know the theorem
for every set of size k — 1. Suppose A is aset with#A > #B and let £ : A —» H Iy
an injective map. Pick an element b € B. Since f is injective, f'(b) consists of &
single element a € A. Then #(B — {b}) = k — 1, and the restriction of f 10 A ~ {a)
gives a function f : A — {a} — B — (b}. By the induction hypothesis this function
f is not injective, hence the original function f could not be injective. 01 3

Similarly one can show that if we have sets A, B with#A > kit B for some natural
number %, then there is at least one element & € B such that

#71(b) = k+ 1.

We now give some examples.

Example A.8. Of every eight people, there are at least two who are born on the san
day of the week. Of every fifteen people, there are at least three born on the sum
day of the week.

Example A.9. Of every n + 1 integers, there are at least two with difference divisible
by n. In order to see this write Z as the disjoint union of the following n subsets &,
0 < a < n — 1. For each a, let Z, be the set of integers k such that k = a mod »
Since we have n + | elements and n sets Z,. there is an a with the property that %,
contains at least two elements x. y of the set. Since x = a and v = a, it follows
x = y mod n and consequently, n | x — v,

Example A.10. We will show that of every five distinct real numbers at least two ol

them satisfy !
0 =< o < 1.

1 +ab i

Let the five numbers be ay, ..., as. Since the map tan : (—7/2,7/2) — Hisa

bijection, there will be five angles #; € (—7/2,7/2), 1 =i < 5, such that @, =
tan #;. Now divide up the interval (— /2, 7/2) to four subintervals (-~ /2, ~x /4],
(—=/4,0], (0, w/4], and (m/4, 7/2). Since we have five #;’s and four subintervals,
by the Pigeon-Hole Principle at least two of them will be in the same subinterval
This means that there are indices ¢, j such that

0<0 —0; <n/4,

Since tan is monotone increasing on the interval (- x/2, 0/2), we have

an O < tan(d, — 0;) < tan(x/4).
Now we recall tan O« 0, tan(r /4) = 1, and that for angles o, 3,

tan cv — tan /4

lan nl..w = .
A= ] +tana-tan 3
We finally get
0= o <1
_+h..n~u.

and we are done.

Example A. 11 (Dirichlet). If o is an irrational number, then there are infinitely many
rational numbers p/q, with ged(p, ¢} = 1, such that
1
o= N < -
q q
Let n be a natural number. We will prove that there is a rational number p/q such
that I < g = n with the property that

a=L£ A«_l.

q qn

It is not hard to see that the main claim of this example follows from this statement.
Equation A.1 is equivalent to the existence of a pair of integers (p, g) with | < ¢ < n
such that _

lqa = p| = .

(A1)

Consider the fractional parts {a), (2ar), ..., (na). These are n numbers in the interval
(0, 1), and never a rational number, as otherwise a would be o rational number, In
particular, each of them lands in the one of the following pigeon-holes: (0, 1/n),
(1/n,2/n), ..., (1 — 1/n, 1). If one of the {ka] falls in the first of these intervals
(0, 1/n), then we have 0 < (ko) < 1/n, which gives 0 < ko — [ka] < 1/n.
This verifies the assertion with p = [ka] and ¢ = k. If none of the fractional parts
falls in the first interval, then we have n [ractional parts in s — 1 intervals. By the
Pigeon-Hole Principle two of the fractional parts, {ka} and {{a} say, will be in the
same interval. Without loss of generality assume & = [. Since the length of each of
the intervals is 1/n we will have

l{ka} — {la]] < 1/n.
The left-hand side of the inequality is equal to
ke — [ka] =l + [{a]| = |(k — D — ([ka] — [la])].
The result follows with ¢ = (k — I} < n and p = [ka] — [la].
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Exercises

A.1.1 Use Theorem A.1 or any other method to prove Theorem A.3.
A.1.2 Use Theorem A.1 to give a proof for the addition formula for sine and cosine:

sin(a + [3) = sinacos 7 + cosasin 3,
cos(cx + 3) = cosa cos 3 — sinasin 3.

A.1.3 Compute cos % - cos 3 - cos .

A.1.4 Compute the value of cos 5 — cos 2* + cos 3.

A.1.5 Let i = 1,12, 15 be the three third roots of 1 in C. Find a formula for the
value of 77 + 15 + 13 forn € Z.

A.2.1 Show that forn e N,

£(0)-= fov)-o

k=0

A.2.2 Prove that for all natural numbers #,

()=

t
A.2.3 Show that for all n € N, I
L

A.2.4 Prove that for all natural »

. i AY. =L wau
mn :A»vl n A: '

A.2.5 Prove the identity
M,_anu# Aukv _ntn+ D Aw: + mv.
o k 3.2+l \ n 41

A.2.6 Show thatforalln € N, n? | (n + 1) — 1.
A.2.7 Show that for all natural numbers n, k,

|_|=»+_ < Mw» < A_ + MVI_ F::_
k41 n k41 {

A3 Show that if we have six numbers from the set (1, 2, .., 10} two of them add
up to an odd number.
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A.3.2 Show that if we have a subset A € {1,2,..., 100} with ten elements, then
the set A has disjoint subsets S, T whose elements have the same sum.

A.3.3 Show that if we choose a subset S C {1,2,...,2n} with n+ 1 elements, then
there are at least two integers x. y € S such that x | y.

A.3.4 Show that if we choose five points in a unit square, there are at least two of
them that are at most +/2/2 apart.

A.3.5 Show that of every group of n people there are two with an identical number
of friends in the group.

A.3.6 Suppose we have an infinite array of natural numbers (a;;); jex with the prop-
erty that @;; = ij. Show that for every natural number k, there is at _oum..,%
natural number m which is repeated at least k times in the array. .




