écrit

MATHÉMATIQUES GÉNÉRALES

Sujet (durée : 6 heures)

La rigueur des démonstrations, le soin apporté à leur rédaction, seront des éléments importants d'appréciation.

Les questions marquées d'une étoile \star peuvent être considérées comme « questions subsidiaires » et laissées de côté dans un premier temps.

Les notations et certains résultats de la partie I sont utilisés dans les parties II.B et III.B. Les parties II et III sont indépendantes l'une de l'autre.

Dans tout le problème, on désigne par ω un entier strictement positif pair, et par Ω un ensemble de cardinal ω .

Pour tout ensemble fini E, on note |E| son cardinal.

Pour tout entier n, on désigne par \bar{n} son image modulo $2\mathbb{Z}$.

On note Z[X, Y] l'ensemble des polynômes à deux indéterminées à coefficients dans Z.

PARTIE I

I.A. GÉNÉRALITÉS

I.A.1. Vérifier que l'ensemble des parties de Ω , muni de l'opération « différence symétrique » définie par

$$(x,y) \longmapsto x+y = \{ t \in \Omega \ ; \ (t \in x \cup y) \ \ \text{et} \ \ (t \notin x \cap y) \}$$
 est un groupe abélien.

I.A.2. Démontrer que l'ensemble des parties de Ω peut être muni d'une structure d'espace vectoriel sur le corps à deux éléments $\mathbb{Z}/2\mathbb{Z} = \{\overline{0}, \overline{1}\}$ dont la loi de groupe additif est celle définie en I.A.1. Grâce à quelle propriété particulière de cette loi de groupe cela est-il possible?

- On désigne par R (Ω) l'espace vectoriel sur Z / 2Z ainsi défini.
 - I.A.3. Quelle est la dimension de $\mathfrak{T}(\Omega)$? Fournir une base de cet espace.
- I.A.4. Vérifier que l'application α de $\mathfrak{L}(\Omega) \times \mathfrak{L}(\Omega)$ dans $\mathbb{Z}/2\mathbb{Z}$ définie par $\alpha(x, \gamma) = \overline{|x \cap \gamma|}$

est une forme bilinéaire symétrique non dégénérée sur $\mathfrak{T}\left(\Omega\right)$.

Dans tout ce qui suit, on suppose $\mathfrak{T}(\Omega)$ muni de cette forme bilinéaire α appelée forme bilinéaire naturelle sur $\mathfrak{T}(\Omega)$.

I.A.5. On désigne par Ω (Ω) le sous-espace vectoriel de dimension 1 de $\mathfrak{L}(\Omega)$ engendré par Ω . On désigne par $\mathcal{H}(\Omega)$ l'orthogonal de Ω (Ω). Décrire cet orthogonal, et retrouver ainsi la formule

$$\binom{\omega}{0} + \binom{\omega}{2} + \cdots + \binom{\omega}{2k} + \cdots + \binom{\omega}{\omega} = 2^{\omega - 1}.$$

Quel est le noyau de la restriction de la forme bilinéaire naturelle à $\mathcal{H}(\Omega)$?

I.B. Codes et polynômes des poids

Les sous-espaces vectoriels de $\mathfrak{T}(\Omega)$ sont appelés les codes de $\mathfrak{T}(\Omega)$. Si \mathfrak{C} est un code de $\mathfrak{T}(\Omega)$, on désigne par \mathfrak{C}° son orthogonal. Pour toute permutation s de Ω , on désigne par \mathfrak{T} l'application linéaire de $\mathfrak{T}(\Omega)$ dans $\mathfrak{T}(\Omega)$ définie par

 $x \mapsto \bar{s}(x) = \{s(t); (t \in x)\}.$

On dit que deux codes \mathfrak{C} et \mathfrak{C}' de $\mathfrak{L}(\Omega)$ sont isomorphes s'il existe une permutation s de Ω telle que $\bar{s}(\mathfrak{C}) = \mathfrak{C}'$.

I.B.1. Un code \mathfrak{C} de $\mathfrak{T}(\Omega)$ est dit auto-orthogonal si $\mathfrak{C} = \mathfrak{C}^{\circ}$. Quelle est la dimension d'un code auto-orthogonal ? Démontrer que si \mathfrak{C} est auto-orthogonal on a $\mathfrak{O}(\Omega) \subset \mathfrak{C} \subset \mathcal{K}(\Omega)$.

Soit ${\mathfrak C}$ un code de ${\mathfrak T}(\Omega)$. On appelle polynôme des poids de ${\mathfrak C}$ et on note $P_{\varphi}(X , Y)$ l'élément de ${\mathbb Z}[X , Y]$ défini par

$$P_{\mathscr{C}}(X, Y) = \sum_{x \in \mathscr{C}} X^{|x|} Y^{\omega - |x|}.$$

I.B.2. On pose $\omega=2$ m et $\Omega=\{t_1,\,t_2,\,\ldots,\,t_m\,,\,u_1\,,\,u_2\,,\,\ldots\,,\,u_m\,\}$. Construire un code auto-orthogonal dont le polynôme des poids est

$$P_{\omega}(X, Y) = (X^2 + Y^2)^m$$
.

Soit $\Gamma\left(\Omega\right)$ l'ensemble des codes auto-orthogonaux de $\mathfrak{L}\left(\Omega\right)$ dont le polynôme des poids est $P_{\omega}\left(X\;,\;Y\right)$. Démontrer que deux éléments quelconques de $\Gamma\left(\Omega\right)$ sont isomorphes.

* I.B.3. Pour $\omega = 2m$ multiple de 4 et $\Omega = \{t_1, t_2, ..., t_m, u_1, u_2, ..., u_m\},$

vérifier que le code \mathcal{B}_{ω} engendré par $\{t_1, \dots, t_m\}$, $\{u_1, \dots, u_m\}$, $\{t_h, t_j, u_h, u_j\}$ pour $h \neq j$ et $1 \leq h \leq m$, $1 \leq j \leq m$,

est un code auto-orthogonal dont le polynôme des poids est

$$Q_{\omega}(X,Y) = \frac{1}{2} \left((X^2 + Y^2)^m + (X^2 - Y^2)^m + (2XY)^m \right).$$

On dit qu'un code auto-orthogonal est pair si les cardinaux de tous ses éléments sont multiples de 4. Vérifier que si ω est multiple de 8, le code \mathfrak{G}_{ω} défini ci-dessus est pair.

Pour $\omega=16$, mettre en évidence un code \mathcal{B}'_{16} , non isomorphe à \mathcal{B}_{16} , dont le polynôme des poids est égal à Q_{16} (X, Y).

I.B.4. Soit ${\mathfrak C}$ un code de ${\mathfrak L}(\Omega)$. On se propose de démontrer la « formule de Mac-Williams » :

$$2^{\dim(\mathcal{C})} P_{\varphi^0}(X,Y) = P_{\varphi}(Y-X,X+Y).$$

I.B.4. a. Soit $f: \mathfrak{L}(\Omega) \to M$ une application à valeurs dans un groupe abélien M dont la loi est notée additivement. On pose $(-1)^{\bar{0}} = 1$ et $(-1)^{\bar{1}} = -1$, et on note alors $\hat{f}: \mathfrak{L}(\Omega) \to M$ la fonction définie par

$$\widehat{f}(x) = \sum_{y \in \widehat{\mathcal{X}}(\Omega)} (-1)^{\alpha(x,y)} f(y).$$

Démontrer que pour tout code $\operatorname{\mathscr{C}}$ de $\operatorname{\mathscr{A}}\left(\Omega\right)$, on a

$$\sum_{x \in \mathcal{C}} \widehat{f}(x) = 2^{\dim(\mathcal{C})} \sum_{y \in \mathcal{C}^0} f(y).$$

I.B.4. b. En prenant pour M le groupe additif de $\mathbb{Z}[X,Y]$, et en choisissant judicieusement la fonction f, démontrer la formule de Mac-Williams.

PARTIE II

II.A. INVARIANTS D'UN GROUPE FINI

Soit V un espace vectoriel complexe de dimension finie $n \ge 1$. Si g est un endomorphisme de V, on note $\mathrm{Tr}(g)$ sa trace. On note I l'endomorphisme-identité de V.

On désigne par G un sous-groupe fini du groupe des automorphismes de V.

II.A.1. On note V^G le sous-espace vectoriel de V formé des $v \in V$ tels que g(v) = v pour tout g appartenant à G. Démontrer que

$$\dim (V^{G}) = \frac{1}{|G|} \sum_{g \in G} \operatorname{Tr}(g).$$

(On pourra utiliser l'endomorphisme $p_G = \frac{1}{|G|} \sum_{g \in G} g$ et démontrer en particulier que $V^G = p_G(V)$.)

On choisit une fois pour toutes une base (e_1, \ldots, e_n) de V. On note A l'algèbre $\mathbb{C}[X_1, \ldots, X_n]$; à tout élément g de G on associe l'application $\sigma_g: A \to A$ définie de la manière suivante

Si, pour $1 \le h \le n$, on a $g(e_h) = \sum_{1 \le j \le n} \gamma_{j,h} e_j$, et si $P(X_1, ..., X_n)$ est

un polynôme, élément de A, on pose

$$\sigma_{g}(P)(X_{1},...,X_{n}) = P(\sum_{1 \leq j \leq n} \gamma_{j,1} X_{j},...,\sum_{1 \leq j \leq n} \gamma_{j,n} X_{j}).$$

Pour tout entier naturel k, on note A_k l'espace vectoriel complexe des polynômes homogènes de degré k en n variables.

II.A.2. Vérifier que l'application $g \mapsto \sigma_g$ est un homomorphisme de G dans le groupe des automorphismes de l'algèbre A. Vérifier que pour tout g appartenant à G l'application σ_g induit, pour tout entier naturel k, un automorphisme de l'espace vectoriel A_k

On note A_k^G l'ensemble des $P \in A_k$ tels que $\sigma_g(P) = P$ pour tout g appartenant à G.

II.A.3. On note a_k (resp. a_k (G)) la dimension de l'espace vectoriel A_k (resp. A_k^G). Démontrer que les séries entières $\sum_{k=0}^{\infty} a_k z^k \text{ et } \sum_{k=0}^{\infty} a_k (G) z^k$ ont des rayons de convergence strictement positifs (on pourra vérifier que, pour

$$|z| < 1$$
, on a $\frac{1}{(1-z)^n} = \sum_{k=0}^{\infty} a_k z^k$.

On pose

$$\Phi_{G}(z) = \sum_{k=0}^{\infty} a_{k}(G) z^{k}.$$

II.A.4. Pour tout $g \in G$, on désigne par g_k l'automorphisme de A_k défini par g. Comparer la trace de g_k au coefficient de z^k dans le développement en série entière de $\frac{1}{\det(I-zg)}$. En déduire que pour |z| < 1, on a

$$\Phi_{\rm G}(z) = \frac{1}{|{\rm G}|} \sum_{g \in {\rm G}} \frac{1}{\det{({\rm I}-zg)}}.$$

II.B. Algèbre associée aux polynômes des poids

On utilise ici les notations, définitions et résultats des parties I.A., I.B., II.A. On note G le groupe de matrices engendré par

$$\mu = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{et} \quad \rho = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Si
$$P(X,Y) \in C[X,Y]$$
 et si $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$, on pose (voir II.A.)
 $\sigma_g(P)(X,Y) = P(aX + cY, bX + dY).$

- II.B.1. Soit $\mathscr C$ un code auto-orthogonal de $\mathscr L(\Omega)$. Démontrer que $P_{\mathscr C}(X,Y)$ est invariant par les transformations σ_g pour $g\in G$.
- II.B.2. Démontrer que le groupe monogène H engendré par $\rho\mu$ est distingué dans G. Quel est le cardinal de H ? Étudier le groupe quotient G/H, et en déduire que G est de cardinal 16.

On pose A = C[X, Y] et on utilise les notations de II.A. pour n = 2.

II.B.3. Décomposer $\frac{1}{(1-X^2)(1-X^6)}$ en éléments simples dans $\mathbb{R}(X)$.

Démontrer que pour |z| < 1 on a

$$\Phi_{\rm G}(z) = \frac{1}{(1-z^2)(1-z^8)}$$

II.B.4. Si r est un réel, on note [r] sa partie entière. Démontrer que la dimension de l'espace A^G_k des polynômes homogènes à deux variables de degré k invariants par G est

$$a_k(G) = \left[\frac{k}{8}\right] + 1$$
 si k est pair,
 $a_k(G) = 0$ si k est impair.

II.B.5. Démontrer que l'algèbre A^G des polynômes à deux variables, invariants par G, est l'algèbre

 $\mathbb{C}[P_2(X,Y),Q_8(X,Y)] = \{P(P_2(X,Y),Q_8(X,Y)); (P(X,Y) \in \mathbb{C}[X,Y])\}$ (les polynômes P_{ω} et Q_{ω} sont définis respectivement en I.B.2. et I.B.3.).

II.B.6. On pose Δ (X, Y) = $X^2Y^2(X^2 - Y^2)^2$. Démontrer que si $\mathscr C$ est un code auto-orthogonal de $\mathscr D$ (Ω), le polynôme $P_{\mathscr C}$ (X, Y) appartient à l'algèbre $\mathbb Z$ [$P_2(X,Y), \Delta(X,Y)$] = { $P(P_2(X,Y), \Delta(X,Y))$; ($P(X,Y) \in \mathbb Z[X,Y]$)}.

PARTIE III

Dans tout ce qui suit, on suppose que l'espace vectoriel \mathbb{Q}^{ω} est muni du produit scalaire canonique (pour lequel la base canonique de \mathbb{Q}^{ω} est orthonormale) noté

$$(v, w) \longmapsto v \cdot w \in \mathbb{Q}.$$

Soit L un sous-groupe du groupe additif de \mathbb{Q}^{ω} . On dit que L est un réseau de \mathbb{Q}^{ω} s'il existe une base $(e_1, e_2, \ldots, e_{\omega})$ de \mathbb{Q}^{ω} telle que L soit l'ensemble des combinaisons linéaires à coefficients entiers relatifs des vecteurs e_1, \ldots, e_{ω} . On dit alors que $(e_1, \ldots, e_{\omega})$ est une \mathbb{Z} base de L.

III.A. GÉNÉRALITÉS SUR LES RÉSEAUX

III.A.1. Soit L un réseau de \mathbb{Q}^{ω} . On appelle dual de L et on note L° l'ensemble des $v \in \mathbb{Q}^{\omega}$ tels que v. $w \in \mathbb{Z}$ pour tout $w \in \mathbb{L}$. Démontrer que le dual d'un réseau est un réseau.

- III.A.2. Soit L un réseau de Q^{ω} . Vérifier que la valeur absolue du déterminant d'une Z-base de L par rapport à une autre Z-base de L est égale à 1. En déduire que la valeur absolue du déterminant d'une Z-base de L par rapport à une base orthonormale de Q^{ω} ne dépend que de L. Cette valeur est appelée « volume de L » et notée vol(L). Démontrer que vol(L)vol(L°) = 1.
- III.A.3. Soit M un sous-groupe du groupe additif de \mathbb{Q}^{ω} qui est engendré par un nombre fini d'éléments de \mathbb{Q}^{ω} . Démontrer que si M contient un réseau de \mathbb{Q}^{ω} , alors M est lui-même un réseau de \mathbb{Q}^{ω} .

(On pourra procéder ainsi :

- a. Démontrer qu'il existe un réseau L contenant M.
- b. Soit $(e_1, \ldots, e_{\omega})$ une Z-base de L. Pour tout $k \in \{1, \ldots, \omega\}$ désignons par L_k le groupe engendré par e_1, \ldots, e_k . Démontrer par récurrence sur k que $M \cap L_k$ est engendré par k vecteurs de \mathbb{Q}^{ω} .)
- III.A.4. On suppose ω multiple de 4. Soit $(w_1, w_2, ..., w_{\omega})$ une base orthogonale de \mathbb{Q}^{ω} telle que pour tout $j \in \{1, 2, ..., \omega\}$ on a w_j . $w_j = 1/4$.

Soit Λ_{ω} l'ensemble des vecteurs $v = \sum_{1 \leqslant j \leqslant \omega} \lambda_j w_j$ tels que

- (a) les λ, sont entiers et tous de même parité,
- (b) $\sum_{1 \leq j \leq \omega} \lambda_j$ est multiple de 4.

Démontrer que Λ_{ω} est un réseau de Q^{ω} , et que $\Lambda_{\omega}^{\circ}=\Lambda_{\omega}$.

III.A.5. Soit L un réseau de \mathbb{Q}^{ω} . Démontrer qu'il existe des entiers $d \ge 1$ tels que pour tout v dans L on ait $d(v,v) \in \mathbb{N}$. On note $d_{\mathbb{L}}$ le plus petit de ces entiers. Pour tout entier naturel k, on note $c_k(\mathbb{L})$ le nombre de vecteurs de L de

carré scalaire (k/d_L) . Démontrer que la série $\sum_{k=0}^{\infty} c_k(L) e^{\pi i k z}$ est convergente

lorsque z appartient au demi-plan supérieur ouvert du plan de Cauchy (on rappelle que si $\zeta = a + ib$ est un nombre complexe, a et b étant réels, on pose $e^{\zeta} = e^{a}(\cos b + i\sin b)$).

On pose

$$\theta_{L}(z) = \sum_{k=0}^{\infty} c_{k}(L) e^{\pi i k z/d_{L}}.$$

On a ainsi

$$\theta_{L}(z) = \sum_{v \in L} e^{\pi i(v.v)z}$$

III.B. CODES ET RÉSEAUX

- III.B.1. Démontrer qu'il existe une base orthogonale $(v_1, v_2, ..., v_{\omega})$ de \mathbb{Q}^{ω} telle que pour tout $j \in \{1, 2, ..., \omega\}$ on ait $v_j \cdot v_j = 1/2$.
- On choisit une telle base, et on désigne dorénavant par R le réseau qu'elle engendre.
- III.B.2. Vérifier que les \mathbb{Z} -bases orthogonales de R ont toutes même ensemble image par la surjection canonique de R sur R/2R.
- On note Ω l'ensemble image d'une \mathbb{Z} -base orthogonale de \mathbb{R} dans $\mathbb{R}/2\mathbb{R}$.
- III.B.3. On désigne par \bar{v} l'image de $v \in \mathbb{R}$ dans $\mathbb{R}/2\mathbb{R}$. Le groupe $\mathbb{R}/2\mathbb{R}$ est muni d'une structure naturelle d'espace vectoriel sur le corps à deux éléments $\mathbb{Z}/2\mathbb{Z}$. On munit cet espace de la forme bilinéaire symétrique β définie par β (\overline{v} , \overline{w}) = $\overline{2v \cdot w}$. Vérifier que l'espace vectoriel $\mathbb{R}/2\mathbb{R}$ muni de la forme bilinéaire β est canoniquement isomorphe à \mathfrak{L} (Ω) muni de la forme bilinéaire naturelle α .
- 9 On identifie dorénavant R / 2R et $\mathfrak{T}(\Omega)$.
- III.B.4. Soit $\mathscr C$ un code de $\mathscr C$ (Ω) . On désigne par L($\mathscr C$) l'image réciproque de $\mathscr C$ par la surjection canonique de R sur R / 2R = $\mathscr C$ (Ω) . Vérifier que L $(\mathscr C)$ est un réseau de $\mathbb Q^\omega$. Démontrer que L $(\mathscr C)^\circ = L(\mathscr C^\circ)$, et que vol $(L(\mathscr C)) = 2^{(\upsilon/2) \dim(\mathscr C)}$.
- On dit que deux réseaux L et L' de \mathbb{Q}^{ω} sont isomorphes s'il existe une isométrie τ de \mathbb{Q}^{ω} telle que $\tau(L) = L'$. Si deux codes \mathscr{C} et \mathscr{C}' sont isomorphes, les réseaux L(\mathscr{C}) et L(\mathscr{C}') sont isomorphes.
- III.B.5. Soit $\mathcal B$ un élément de l'ensemble $\Gamma(\Omega)$ [voir I.B.2.]. Démontrer que L $(\mathcal B)$ est isomorphe à $\mathbb Z^\omega$.
- \bigstar III.B.6. On suppose ω multiple de 4. Démontrer que le réseau Λ_{ω} défini en III.A.4. contient un réseau isomorphe à 2R. Démontrer que Λ_{ω} est isomorphe à $L(\mathcal{B}_{\omega})$, et que si ω est multiple de 8 les carrés scalaires des vecteurs de Λ_{ω} sont tous pairs.
- III.B.7. Pour z parcourant le demi-plan supérieur ouvert du plan de Cauchy, on pose

$$\varphi_2(z) = 2 \sum_{k=0}^{\infty} e^{-2\pi i \left(k + \frac{1}{2}\right)^2 z}$$
 et $\varphi_3(z) = 1 + 2 \sum_{k=1}^{\infty} e^{-2\pi i k^2 z}$.

Soit ${\mathcal C}$ un code de ${\mathcal R}\left(\Omega\right)$. Démontrer que

$$\theta_{L(\mathcal{C})}(z) = P_{\mathcal{C}}(\varphi_2(z), \varphi_3(z)).$$