8.10 (Y) Let f(x) = x² + 2x + 7. For each prime p, solve the equation f(x) 0 mod p, and pick representatives for the roots 0 ≤ v1, v2 ≤ p − 1, allowing for the possibility that v1 and v2 may be equal. Normalize the roots by considering v1/p, v2/p ∈ [0, 1]. How are these numbers distributed in the interval [0, 1] as p gets large? Experiment with other polynomials, including quadratic polynomials with or without rational roots, and polynomials of higher degrees 8.11 (Y) Investigate the number of solutions of the equation x² ≡ a mod 2" in

Notes

several values of a and n.

p-adic numbers

In the proofs of Lemma 8.4, Lemma 8.5, and in Example 8.6 we encountered sequences $(x_n)_{n\geq 1}$ with the property that

- x_n is a congruence class modulo p^n , represented by an integer, denoted by the same letter x_n , $0 \le x_n < p^n$;
- $x_{n+1} \equiv x_n \mod p^n$, for each $n \ge 1$.

We define a *p-adic integer* to be a sequence of integers $(x_n)_n$ satisfying these properties. We denote the set of *p*-adic integers by \mathbb{Z}_p . Note that for each $r \in \mathbb{Z}_n$ the ordinary set of integers, we obtain a constant sequence $\overline{r} := (r \mod p^n)_{n \ge 1} \in \mathbb{Z}_p$ showing that \mathbb{Z} is naturally a subset of \mathbb{Z}_p . (Here $r \mod p$ is the remainder of the division of r by p, note that for p > r, $r \mod p = r$.) The set \mathbb{Z}_p is a commutative ring equipped with the following operations:

$$(x_n)_{n\geq 1} + (y_n)_{n\geq 1} := (x_n + y_n)_{n\geq 1};$$

$$(x_n)_{n\geq 1} \cdot (y_n)_{n\geq 1} := (x_n y_n)_{n\geq 1}$$

The zero element and the multiplicative identity of \mathbb{Z}_p are given by the constant sequences $\overline{0}$ and $\overline{1}$, respectively. When there is no confusion we drop the line on top of an ordinary integer when thinking of it as a p-adic integer, e.g., we write 0 instead of $\overline{0}$.

It is not hard to see that \mathbb{Z}_p has no zero divisors, i.e., if xy = 0, then either x = 0 or y = 0. We denote by \mathbb{Q}_p the field of fractions of \mathbb{Z}_p , and call it the field of p-adia numbers. It is clear that \mathbb{Q}_p contains \mathbb{Q} .

Let $x = (x_n) \in \mathbb{Z}_p$. Since $p^n \mid x_{n+1} - x_n$, we can write $x_{n+1} = x_n + a_n p^n$ for some $0 \le a_n < p$, and, if with analogy, we let $x_1 = a_0$, we get $x_1 = a_0$, $x_2 = a_0 + a_1 \cdot p$, $x_3 = a_0 + a_1 \cdot p + a_2 \cdot p^2$, $x_4 = a_0 + a_1 \cdot p + a_2 \cdot p^2 + a_3 \cdot p^3$, etc. We often write the p-adic integer x as a formal sum $\sum_{k=0}^{\infty} a_k \cdot p^k$, with each a_k in the

 $\{0,\dots,p-1\}$. For example, $1=\sum_{k=0}^\infty (p-1)\cdot p^k$. If $a_0\neq 0$, then x=0, $a_k\cdot p^k$ is invertible in \mathbb{Z}_p . If we denote the set of all invertible elements in by \mathbb{Z}_p^\times , then every non-zero $x\in\mathbb{Z}_p$ can be written as $x=\varepsilon\cdot p^m$ with $\varepsilon\in\mathbb{Z}_p^\times$, 0. By considering quotients of such expressions, we see that every non-zero nument of \mathbb{Q}_p can be written as $\varepsilon\cdot p^m$ for $\varepsilon\in\mathbb{Z}_p^\times$, $m\in\mathbb{Z}$.

hown as Hensel's Lemma: Let $f \in \mathbb{Z}[X]$, and suppose $x_1 \in \mathbb{Z}$ is such that $f(x) \equiv 0 \mod p$, but $f'(x_1) \not\equiv 0 \mod p$. Then there is $x \in \mathbb{Z}_p$ such that $f(x) \equiv 0$ Let's examine the equation $x^2 + 1 \equiv 0$. Clearly, this equation has no solutions If p is an odd prime such that $p \equiv 1 \mod 4$, then Equation (6.3) implies that equation $x^2 + 1 \equiv 0 \mod p$ has a solution x_1 . Also if we let $f(x) = x^2 + 1$, f(x) = 2x, and this implies $f'(x_1) \not\equiv 0 \mod p$. Hensel's Lemma now implies that $f(x) = x^2 + 1$, and $f(x) = x^2 + 1$, and $f(x) = x^2 + 1$, and $f(x) = x^2 + 1$. Then there is $f(x) = x^2 + 1$, and $f(x) = x^2 + 1$.

The field of p-adic numbers can also be constructed using topology. This method mibbles the way \mathbb{R} is constructed from \mathbb{Q} via Cauchy sequences. Recall that a muchy sequence of real numbers is a sequence $(x_n)_n$ such that for every $\varepsilon > 0$, there v such that $|x_n - x_m| < \varepsilon$ for all n, m > N. We say Cauchy sequences $(x_n)_n$, $(y_n)_n$ and v-arite v-ar

$$\gamma = p^r \cdot \frac{a}{b}$$

with $r \in \mathbb{Z}$, $a, b \in \mathbb{Z}$, with $\gcd(p, ab) = 1$. Then we define $|y|_p = p^{-r}$. We also within $|0|_p = 0$. Then for all rational numbers $x, |x|_p \ge 0$, and $|x|_p = 0$ if and only $|x|_p = 0$. Also, we have a triangle inequality, $|x + y|_p \le |x|_p + |y|_p$. In fact, we have much stronger ultrametric inequality $|x + y|_p \le \max(|x|_p, |y|_p)$.) This means that if we define $d_p(x, y) = |x - y|_p$, we obtain a metric on \mathbb{Q} , and it makes sense to all n about Cauchy sequences. We define a p-Cauchy sequence of rational numbers to be a sequence $(x_n)_n$ such that for $\varepsilon > 0$, there is N such that $|x_n - x_m|_p < \varepsilon$ for all n, m > N. We say the p-Cauchy sequences $(x_n)_n$, $(y_n)_n$ are p-equivalent, and write $(x_n)_n \sim_p (y_n)_n$, if for all $\varepsilon > 0$, there is N > 0 such that $|x_n - y_m|_p < \varepsilon$ for all n, m > N. The field \mathbb{Q}_p is nothing but the p-equivalence classes of p-Cauchy equences of rational numbers.

The beauty of the topological construction of p-adic fields is that it allows us to construct p-adic type field from other number fields. Let K be a number field as in