Elementary proof of Fermat-Wiles' Theorem by Ahmed Idrissi Bouyahyaoui

Fermat-Wiles' Theorem :

(1) « the equality $x^n+y^n=z^n$, with n, x, y, z $\in N^*$, is impossible for n>2. »

Abstract of proof :

In the division of $x^n = z^n - y^n$ by $x^{n-1} = az^{n-1} - by^{n-1}$, (a,b) $\in \mathbb{Z}^2$, remainder must be zero implying the equality $b^2 y^{n-2} = a^2 z^{n-2}$ which is impossible for n>2 since $x^{n-1} = az^{n-1} - by^{n-1}$ and x, y, z are coprim numbers.

The application of the procedure scheme of Euclidian division until remainder equal to z^n - y^n , and the evaluation of remainders and partial quotients allow to obtain the unique remainder which can and must be equal to zero.

We suppose x, y and z are coprim numbers.

Given gcd(y,z)=1 and the corollary of the Bachet's theorem (1624), it exists two relative integers a and b such that :

(2) $x^{n-1} = az^{n-1} - by^{n-1}$

In the division $(z^{n}-y^{n}):(az^{n-1}-by^{n-1})$ $(x=x^{n}/x^{n-1})$ remainder must be zero. Let us put the division and carry out the operations until obtain the remainder equal to dividend $z^{n} - y^{n}$ and then obtain the candidate remainders to be zero.

$$x^{n} = z^{n} - y^{n} \qquad | x^{n-1} = az^{n-1} - by^{n-1}$$

$$-z^{n} + (b/a)zy^{n-1} \qquad z/a + y/b - z/a - y/b$$
Evaluation of remainders and partial quotients :
$$R_{0} = -y^{n} + (b/a)zy^{n-1} \qquad R_{0} = 0 \Rightarrow (q) = x = z/a \Rightarrow ax = z \Rightarrow R_{0} \neq 0$$

$$+ y^{n} - (a/b)yz^{n-1} \qquad R_{1} = 0 \Rightarrow b^{2}y^{n-2} - a^{2}z^{n-2} = 0 \Rightarrow (q) = x = z/a + y/b$$

$$(b/a)zy^{n-1} + z^{n} \qquad R_{2} = z^{n} - (a/b)yz^{n-1} \qquad R_{2} = 0 \Rightarrow (q) = x = z/a + y/b - z/a \Rightarrow bx = y \Rightarrow R_{2} \neq 0$$

$$+ (a/b)yz^{n-1} - y^{n} \qquad R_{2} = 0 \Rightarrow (q) = x = z/a + y/b - z/a \Rightarrow bx = y \Rightarrow R_{2} \neq 0$$

$$+ (a/b)yz^{n-1} - y^{n} \qquad R_{2} = 0 \Rightarrow (q) = x = z/a + y/b - z/a \Rightarrow bx = y \Rightarrow R_{2} \neq 0$$

$$+ (a/b)yz^{n-1} - y^{n} \qquad R_{3} = z^{n} - y^{n} \neq 0, \qquad \text{end of the operations cycle.}$$

Evaluation of remainders and partial quotients :

If the remainder R_0 is zero then the quotient is x = z/a, so ax = z, which is impossible since gcd(x,z)=1.

If the remainder R_2 is zero then the quotient is x = z/a + y/b-z/a = y/b, so bx = y, which is impossible since gcd(x,y)=1.

 $R_3 = z^n - y^n \neq 0$, $(x, y, z) \in N^{*3}$ and gcd(y,z)=1.

The application of the procedure scheme of the Euclidean division allowed to obtain the remainders and the remainder which can and must be zero is unique and obtained by deduction : three remainders out of the four obtained cannot be equal to zero.

So the problem of the existence of unique remainder zero does not arise.

Therefore only the remainder R₁ can and must be equal to zero :

(3) $R_1 = (b/a)zy^{n-1} - (a/b)yz^{n-1} = ((b/a)y^{n-2} - (a/b)z^{n-2})yz = 0$ So $(b/a)y^{n-2} - (a/b)z^{n-2} = 0$ which implies the equality : (4) $b^2 y^{n-2} = a^2 z^{n-2}$

where, for n>2, as gcd(y,z)=1, y divides a^2 and z divides b^2 , so gcd(a,y) > 1 and gcd(b,z) > 1.

Then, according to the equality $x^{n-1} = az^{n-1} - by^{n-1}$ (2), gcd(a,y) > 1 => gcd(x,y) > 1and gcd(b,z) > 1 => gcd(x,z) > 1, but gcd(x,y) = gcd(x,z) = 1 (hypothesis).

Therefore, the equalities $b^2y^{n-2} - a^2z^{n-2} = 0$ (R), $x^{n-1} = az^{n-1} - by^{n-1}$ (d), $x^n = z^n - y^n$ (D) are impossible for n>2.

Division with integer numbers :

Dividend D_0 is multiplied by a and dividend D_1 is multiplied by b :

a *	$z^n - y^n$ (D ₀)	az ⁿ⁻¹ – by ⁿ⁻¹ (d)
=>	> az ⁿ - ay ⁿ -az ⁿ + bzy ⁿ⁻¹	z + ay -bz + bz as we have multiplied D ₀ by a, then D ₁ by b, we have $z/a + ay/ab -bz/ab + bz/ab$
	$bzy^{n-1} - ay^{n} (D_{1})$ > $b^{2}zy^{n-1} - aby^{n}$ - $a^{2}yz^{n-1} + aby^{n}$	Evaluation of remainders and partial quotients : $R_0 = 0 \Rightarrow (q) = x = z/a \Rightarrow ax = z \Rightarrow R_0 \neq 0$
>>>>R ₁ =	$b^{2}zy^{n-1} - a^{2}yz^{n-1}$ (D ₂ - $b^{2}zy^{n-1} + abz^{n}$) $R_1 = 0 \Rightarrow b^2 y^{n-2} - a^2 z^{n-2} = 0 \Rightarrow (q) = x = z/a + y/b$
D ₃ =R ₂ =	$abz^{n} - a^{2}yz^{n-1}$ (D ₃) - $abz^{n} + b^{2}zy^{n-1}$	$R_2=0 =>(q)=x=z/a+y/b-z/a => bx = y => R_2 \neq 0$
R ₁ <<<< ***	b²zy ⁿ⁻¹ - a²yz ⁿ⁻¹	end of the operations cycle.
Domark ·		

Remark :

Let the system :

(5) $a^x + b^y = c^z$, (a, b, c, x, y, z) $\in N^{*6}$ and a, b, c are coprim integers.

- (6) $a^x = c^z b^y$
- (7) $a^{x-1} = uc^{z-1} vb^{y-1}$, (u, v) $\in Z^2$

In application of the algorithm described above to the division $c^{z}-b^{y}$: $uc^{z-1}-vb^{y-1}$, the remainder which can and must be zero implies the equality :

(8)
$$v^2 b^{y-2} = u^2 c^{z-2}$$
,

which is impossible for y>2 or z>2 and, by symmetry, for x>2 and z>2.