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Ford Circles Strike Gold
Andrew J. Simoson

Abstract. Call a reduced fraction with denominator q a bronze, silver, or gold approximation
with respect to a given irrational number ω if they differ by less than the reciprocal of the
product of the square of q and 1, 2, or

√
5, respectively. Suppose A and B are neighboring

Farey fractions sandwiching ω, where A’s denominator is at least as large as B’s denominator.
Then B is bronze; either A or B is silver; and at least one but not all of A, B, and their mediant
is gold. We prove afresh these results using the geometry of Ford circles rather than a purely
algebraic approach, and explore some open questions with respect to the bronze-silver-gold
classification while panning for gold fractions among the continued fraction convergents for
ω.

1. INTRODUCTION. Given a positive irrational number ω and a reduced fraction p

q

of nonnegative integers, we say that p

q
is a bronze, silver, or gold approximation for ω

if ω and p

q
differ by less than 1

q2 , 1
2q2 , or 1√

5q2 , respectively, terminology introduced in
[15, pp. 244–245], [16]. In 1842, Gustav Lejeune Dirichlet showed in [2]—using what
is arguably the first application of the pigeon-hole principle although he called it the
Schubfachprinzip or the drawer principle [13]—that there are an infinite number of
bronze fractions for each ω. Fifty years later, Adolf Hurwitz showed that there are an
infinite number of gold fractions for ω [6]. He also showed that for any real number ε,
0 < ε < 1, there exist irrational numbers ω, such as the golden mean ω = φ = 1+√

5
2 ,

for which there are only a finite number of fractions p

q
where |ω − p

q
| < ε√

5q2 ; thus
there is no need for, say, platinum fraction status. In 1938, Lester Ford simplified
Hurwitz’s argument using the geometry of what are now called Ford circles [4]. In
this article we simplify and extend Ford’s argument. In particular, suppose that A = a

b

and B = c

d
are reduced nonnegative fractions where b ≥ d, |ad − bc| = 1, and ω lies

between A and B (which is equivalent to saying that A and B are neighboring Farey
fractions sandwiching ω). Then B is bronze; either A or B is silver; and at least one but
not all of A, B, and A ⊕ B = a+c

b+d
—called the mediant of A and B—is gold. Finally,

we explore panning for gold fractions among the continued fraction convergents for
ω.

Before doing so, we define a few terms.

2. FAREY SEQUENCES AND FORD CIRCLES. For the remainder of this article
unless specified otherwise, when we write a fraction such as a

b
we mean that a and b are

relatively prime integers. If we identify the fraction p

q
with the vector

[
p

q

]
, then the

mediant a

b
⊕ c

d
is the fraction equivalent to the vector

[
a

b

]
+

[
c

d

]
. Let n be a positive

integer. The Farey sequence of order n, denoted Fn—named after geologist John Farey
(1766–1826)—is that set, in ascending order, of all (reduced) fractions in [0, 1] whose
denominators are at most n. Furthermore, fractions a

b
and c

d
are adjacent fractions or

neighbors if they are adjacent fractions in some Farey sequence Fn. We say that c

d
is
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Figure 1. Ford circles OA and OB for Farey neighbors A = a
b

and B = c
d

.

simpler than a

b
if d < b. As shown in, for example, [9, p. 257] or [15, pp. 113–114], a

b

and c

d
are neighbors if and only if |ad − bc| = 1; and two Farey neighbors share the

same denominator d only when d = 1. The first few Farey series are

F1 =
{

0

1
,

1

1

}
, F2 =

{
0

1
,

1

2
,

1

1

}
, F3 =

{
0

1
,

1

3
,

1

2
,

2

3
,

1

1

}
, F4 =

{
0

1
,

1

4
,

1

3
,

1

2
,

2

3
,

3

4
,

1

1

}
.

Furthermore, these Farey properties hold for the set of fractions between any two con-
secutive integers.

To generate Fn+1 from Fn, for each pair of adjacent fractions A = a

b
and B = c

d
in

Fn where b + d = n + 1, insert their mediant between them. As shown in [9, p. 257]
or [15, pp. 113–114], the mediant A ⊕ B is already in reduced form and lies between A

and B, and is a Farey neighbor of both A and B; and A ⊕ B is the simplest fraction in
the open interval from A to B. Let n be a nonnegative integer. As follows by induction,
the iterated mediant of Farey neighbors A and B, nA ⊕ B = na+c

nb+d
, is a Farey neighbor

of both A and (n − 1)A ⊕ B for all n ≥ 1. Since the mediant operator is commutative,
we have nA ⊕ B = B ⊕ nA. With respect to identifying fractions with vectors, we
have nA ⊕ B ≡ nA + B where A and B are vectors equivalent to A and B. Observe
that the iterated mediant nA ⊕ B converges monotonically to A as n → ∞.

The Ford circle for the fraction A = a

b
, denoted OA, is the circle with center ( a

b
, 1

2b2 )

and radius 1
2b2 , as shown in Figure 1. We denote the radius of OA as |OA| = 1

2b2 .
Figure 2 shows the relationships between Ford circles and the iterated mediant of

two Farey neighbors A and B. As n increases positively in Figure 2, the Ford circles
for nA ⊕ B form a sequence of shrinking disks converging monotonically to the point
(A, 0). Similarly, the Ford circles for A ⊕ nB converge to the point (B, 0).

To give geometric interpretations to bronze, silver, and gold, we have that a fraction
a

b
is silver for ω if the vertical line L with equation x = ω intersects the interior of

the Ford circle for a

b
. Analogously, the fraction a

b
is bronze or gold if L intersects the

interiors of the Ford circles concentrically rescaled by factors of 2 or 2√
5

≈ 0.894,

respectively. For example, Figure 3 illustrates this geometric interpretation, with 106
39

bronze for e, 87
32 silver, and 193

71 gold, where the solid circles are Ford circles, and the
dashed circles are Ford circles scaled by 2/

√
5.

This next proposition demonstrates a striking relationship between Farey neighbors
and their Ford circles, [4, pp. 588, 592], whose proof we include for completeness.
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Figure 2. The iterated mediants nA ⊕ B and A ⊕ nB with respect to Ford circles, A = 3
2 and B = 2

1 .

Figure 3. Neighboring bronze, silver, and gold fractions for e ≈ 2.718.

Proposition 1 (Ford circles for Farey neighbors). Let A = a

b
and B = c

d
be non-

negative fractions. A and B are Farey neighbors if and only if their Ford circles are
tangent.

Proof. Let r and s be the radii of the two circles in Figure 1. The two circles will
be tangent exactly when the hypotenuse of the right triangle has length r + s. The
tangency condition is thus

(r − s)2 +
(a

b
− c

d

)2 = (r + s)2.

This condition simplifies to

(
ad − bc

bd

)2

= 4rs.

Substituting r = 1
2d2 and s = 1

2b2 converts this equation to the equation (ad − bc)2 =
1. Therefore the circles are tangent if and only if |ad − bc| = 1.

Corollary 2 (Intersection of Ford circles). The intersection of any two distinct Ford
circles is either empty or a single shared boundary point.

502 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 128



Figure 4. Mesh triangles for Farey neighbors and their mediant.

Proof. The proof is by induction on the recursive way in which the Farey series Fn

is defined. Observe that the Farey circles for F1 are tangent circles with centers at
(0, 1

2 ) and (1, 1
2 ). The Farey circles for F2 include the circle with center ( 1

2 ,
1
8 ) whose

intersection with each circle of F1 is a single point, and so on.

Figure 3 illustrates the next corollary where A = 106
39 and B = 87

32 are neighboring
Farey fractions that sandwich ω = e. In this case B is at least bronze (and is in fact
silver).

Corollary 3 (A bronze and silver sandwich). Suppose the irrational number ω lies
between Farey neighbors A = a

b
and B = c

d
with b ≥ d. Then B is bronze, and at least

one of A and B is silver with respect to ω.

Proof. Since |A − B| = 1
bd

, the projection of the concentrically-rescaled-by-a-factor-
of-2 Ford circle for B onto the x-axis includes the interval from A to B, as does
the projection of the union of the interiors of the Ford circles for A and B with the
exception of the midpoint of A and B when they are adjacent integers. Note that this
midpoint is rational so it cannot equal ω.

3. GOLD AMONG FAREY NEIGHBORS AND THEIR MEDIANT. To show
Hurwitz’s result that there are an infinite number of gold fractions for any irrational
number, Ford defined the mesh triangle associated with Farey neighbors A and B

as the region in the plane between the Ford circles for A, B, and A ⊕ B, as shown
in Figure 4 where α, β, and γ are the points of tangency between the circles. Ford
demonstrated that if the vertical line through (ω, 0) intersects the mesh triangle asso-
ciated with A and B, then at least one of A, B, and A ⊕ B is a gold fraction for ω

[4, Theorem 6, p. 592]; thus, since every vertical line through an irrational point on the
x-axis intersects an infinite number of mesh triangles, we have Hurwitz’s result.

However, we exploit the Ford circle idea to reach a stronger result: that for each
pair of Farey fractions A and B sandwiching ω, at least one but not all of A, B, and
A ⊕ B is gold. That is, instead of restricting ω to lie in the projection of the mesh
triangle to obtain gold, ω must simply lie between A and B. To develop terminology
for explaining this result, consider three mutually tangent circles C0, Ct , and Cu that
are tangent to the x-axis at the real numbers 0, t , and u with 0 < u < t , as depicted in
Figure 5. Let C ′

0, C ′
t , and C ′

u be concentrically shrunk copies of C0, Ct , and Cu with
shrinking factor 2√

5
. These are shown as dashed circles in the figure. We may rescale

the whole figure so that C0 has radius 1. By symmetry we may assume Ct is no larger
than C0, so t ≤ 2. We refer to (C ′

0, C ′
t , C ′

u) as a radical triad (because the three circles
are scaled by a radical).
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Figure 5. A radical triad (C′
0, C′

t , C′
u), with each member tangent to vertical line L.

To illustrate how the circles C0 and Ct are related to the Ford circles for neighboring
Farey fractions, consider from Figure 2 the Ford circles for A = 3

2 and A ⊕ B = 5
3 . To

find the t value related to this pair of Ford circles, we first translate the two Ford circles
to the left by A so that they now rest on the x-axis at 0 and 1

6 . Scale this arrangement of
circles by 8, the reciprocal of the radius of OA. The two transformed circles are now C0

and Ct where t = (8) · ( 1
6 ) = 4

3 with respect to the original number line. To generate
C0 and Ct corresponding to the Ford circles for Farey fractions F1 < F2 when F1’s
denominator is more than F2’s denominator, we would first reflect their Ford circles
about the y-axis, and continue as we did with the two Ford circles in this example.

The next two propositions highlight properties of radical triads.

Proposition 4 (A unique tangent for a radical triad). There is a unique value of
t , namely t = √

5 − 1, such that each of the circles in (C ′
0, C ′

t , C ′
u) is tangent to the

same vertical line L, with C ′
0 and C ′

u to the left of L and C ′
t to the right.

Proof. Let r be the radius of Ct and s the radius of Cu. First we find equations express-
ing the tangencies between the three circles C0, Ct , and Cu. For C0 and Ct , consider
the right triangle—much like the dashed triangle in Figure 1—whose hypotenuse is the
line segment joining the centers of C0 and Ct and whose other two sides are vertical and
horizontal, with a vertical side at the center of C0 and a horizontal side at the center of
Ct . By the Pythagorean theorem, we have t2 + (1 − r)2 = (1 + r)2, which simplifies
to t2 = 4r , or r = t2/4. Similarly, the tangency of C0 and Cu gives s = u2/4; and the
tangency of Ct and Cu gives (t − u)2 + (r − s)2 = (r + s)2, or (t − u)2 = 4rs. With
r = t2/4 and s = u2/4, the equation (t − u)2 = 4rs becomes (t − u)2 = t2u2/4.

Next we determine the value of t for which the vertical line L tangent to the right
side of C ′

0 is also tangent to the left side of C ′
t . Tangency to the right side of C ′

0 means
that the x-coordinate of L is 2√

5
and tangency to the left side of C ′

t means the x-

coordinate of L is t − 2√
5
r = t − 2√

5
· t2

4 . Equating these two x-coordinates leads to

the equation t2 − 2
√

5 t + 4 = 0 with roots t = √
5 ± 1. We want the root with t < 2,

namely, t = √
5 − 1. Similarly, for L to be tangent to the right side of C ′

u means that
2√
5

= u + 2√
5

· u2

4 which simplifies to u2 + 2
√

5 u − 4 = 0 with roots u = ±3 − √
5.

We want the positive root, u = 3 − √
5.
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Finally, to see that Ct and Cu are tangent when t = √
5 − 1 and u = 3 − √

5,
the condition for tangency is (t − u)2 = t2u2/4. Note that (t − u)2 = (2

√
5 − 4)2 =

36 − 16
√

5, and that t2u2/4 = (6 − 2
√

5)(14 − 6
√

5)/4 = (3 − √
5)(7 − 3

√
5) =

36 − 16
√

5.

We note the following monotonicity property: As t varies over the interval (0, 2]
the left edge of C ′

t varies monotonically with t , moving to the left as t decreases and to
the right as t increases. This is because the left edge of C ′

t has x-coordinate t − 2√
5
r =

t − 1
2
√

5
t2 and the graph of this quadratic function of t is an inverted parabola crossing

the horizontal axis at t = 0 and t = 2
√

5, so the parabola increases on the t-interval
[0,

√
5], which contains the interval [0, 2].

Proposition 5 (Verticals piercing a radical triad). As t varies over the interval
(0, 2], each vertical line x = ω with 0 ≤ ω ≤ t intersects the interior of either one
or two but not all of the circles C ′

0, C ′
t , and C ′

u, except when t = √
5 − 1 and the line

x = ω is the line L tangent to all three circles.

Proof. Consider first what happens as t decreases from t = √
5 − 1. By the mono-

tonicity property, the left edge of C ′
t is always to the left of the right edge of C ′

0. The
same principle shows that the right edge of C ′

u is always to the left of the left edge of
C ′

t , because we may rescale and translate the figure so that Ct remains at a fixed size
and position while Cu varies relative to Ct , ever staying tangent to it. That is, imag-
ining that Ct remains fixed in size and position as t decreases, we see that C0 swells
in size, rolling to the left along the x-axis and clockwise along Ct ; in order for Cu to
remain in tangent relation to both of the other circles and the x-axis, it also will swell
in size and roll to the left and clockwise along Ct .

Thus for t <
√

5 − 1, the left edge of C ′
t lies strictly between the right edge of

C ′
u and the right edge of C ′

0. Hence, for t <
√

5 − 1, every vertical line x = ω with
0 ≤ ω ≤ t intersects the interior of either one or two but not all of C ′

0, C ′
t , and C ′

u.
Figure 4a illustrates this case.

Now consider what happens as t increases over the interval [
√

5 − 1, 2]. Applying
the monotonicity property twice as above, we see that the left edge of C ′

t is always
between the right edge of C ′

0 and the right edge of C ′
u. (This time, when fixing Ct

in size and position as t increases, the other two circles shrink, rolling to the right.)
Moreover, the left edge of C ′

u remains to the left of the right edge of C ′
0 since this is

true when t = 2 and u = 1, as illustrated in Figure 4b. Thus the desired conclusion
also holds for t in the interval [

√
5 − 1, 2].

Note that if the radical triad (C ′
0, C ′

t , C ′
u) had been defined using a shrinking factor

less than 2√
5
, then for t values near

√
5 − 1 there would be vertical lines x = ω near L

that do not intersect any circle of the triad.
Our main result follows. For an algebraic proof using the number line—rather than

our geometric proof below using Ford circles in the plane—see [10, Lemma 1.8].

Corollary 6 (At least one but not all is gold). If Farey neighbors A and B sandwich
the irrational number ω, then at least one but not all of A, B, and A ⊕ B is gold.

Proof. Let A = a

b
and B = c

d
with b ≤ d so that OA is at least as large as OB . By

reflection symmetry, we may assume A < B. By horizontal translation and rescaling
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of the plane, we may convert OA, OB , and OA⊕B into the circles C0, Ct , and Cu in
Proposition 5, respectively. Therefore the proposition gives the desired result.

4. GOLD CONVERGENTS FOR SIMPLE CONTINUED FRACTIONS. To
illustrate how to generate Farey neighbors sandwiching the irrational number ω, we
consider the simple continued fraction algorithm for ω, also called the regular con-
tinued fraction algorithm. This algorithm corresponds to jumping successively along
a sequence of bronze, silver, and gold fractions for ω from one fraction—now called
the convergent of the continued fraction for ω—to another fraction. From a long tra-
dition, we say that the list of partial denominators [m0; m1, m2, m3, . . .] denotes a
continued fraction where m0 is a nonnegative integer and mi are positive integers for
all positive integers i. Each list of the first i + 1 partial denominators of the continued
fraction evaluates to convergent i, denoted Ci , for all i ≥ 0:

C0 = m0, C1 = m0 + 1

m1
, C2 = m0 + 1

m1 + 1
m2

, . . . .

When the sequence Ci converges to a number ω, we write ω = [m0; m1, m2, . . .].
Similarly, we write Ci = [m0; m1, m2, . . . , mi]. The initial partial denominator m0

is m0 = �ω. For each i ≥ 1, mi is defined by ω = [m0; m1, m2, . . . , mi−1 + r] for
some positive real number r less than 1, and

mi =
⌊

1

r

⌋
, (1)

which means that mi ≥ 1.
To proceed directly from one convergent to the next we use a Fibonacci-like recur-

sion among the previously defined convergents. The symbols C−1 = 1
0 and C−2 = 0

1
are called preconvergents. The following proposition is a list of simple continued
fraction properties. Proofs of the first five items can be found in almost any elemen-
tary number theory text such as [14, Theorem 12.9, pp. 485–486] or [15, Proposition
16, pp. 318–319]. We illustrate property (ii) in Example 9. The award-winning article
by Richards [12] is an algorithm based on items (iv) and (v): to find the next con-
vergent for ω following the convergents B = c

d
and A = a

b
that sandwich ω where

b > d, generate the sequence A ⊕ B, 2A ⊕ B, and so on until the fraction nA ⊕ B

is on the same side of ω as A for some integer n; the next convergent is taken to be
(n − 1)A ⊕ B; the reason this algorithm works is because the real number s defined
in property (iv) exceeds 1. Standard algebraic proofs of property (vi) appear in Hardy
and Wright’s classic number theory text [5, Theorem 184, p. 184], and [11, Satz 2.11].
For completeness we include proofs for properties (v) and (vi).

In the spirit of Lester Ford, we offer a Ford circle proof for property (vi)—which
may be new in the literature.

Proposition 7 (Convergents of a continued fraction). The simple continued fraction
for the positive irrational number ω has the following properties.

i. ω’s partial denominators form a unique sequence, ω = [m0; m1, m2, . . .].
ii. The convergents Ck for ω, for each integer k ≥ 0, are defined recursively from ω’s
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partial denominators by Ck = mkCk−1 ⊕ Ck−2 where

p−2 = 0, q−2 = 1,

p−1 = 1, q−1 = 0,

pk = mkpk−1 + pk−2, qk = mkqk−1 + qk−2.

(2)

iii. Ck−1 and Ck are adjacent fractions in some Farey sequence for all k ≥ 1.
iv. The partial denominators mk are determined by solving ω = sCk−1 ⊕ Ck−2 and
taking mk = �s for all k ≥ 0, where s > 1 is a real number. In fact, s = 1

r
, where r is

defined in (1).
v. The sequence Ck oscillates about ω, for all k ≥ 0.
vi. The sequence Ck includes every silver and gold fraction for ω.

Proof. For (v), we know that m0 = �ω, so C0 = �ω. Solving ω = sC0 ⊕ C−1 =
s�ω+1
s·1+0 for s gives s = 1

ω−�ω > 1. The function sC0 ⊕ C−1 converges monotonically
to C0 as s increases from 0. With m1 = �s, we have (m1 + 1)C0 ⊕ C−1 and C1 =
m1C0 ⊕ C−1 are on opposite sides of ω, which means that C0 and C1 are on opposite
sides of ω. Assume that Ci−1 and Ci−2 are on opposite sides of ω for all i, where 2 ≤
i ≤ k for some positive integer k ≥ 2. Since sCk−1 ⊕ Ck−2 monotonically converges
to Ck−1 as s increases from 0, we see that Ck and Ck−2 are on the same side of ω, which
means that Ck and Ck−1 are on opposite sides of ω.

For (vi), suppose that Q = p

q
is silver or gold but not a convergent of ω. Because

the denominators of ω’s convergents form a strictly increasing sequence of positive
integers after the initial convergent C0, there exist successive convergents B = c

d
and

A = a

b
with d ≤ q ≤ b. This restriction means that the sizes (radii) of the Ford circles

OA, OB , and OQ satisfy |OA| ≤ |OQ| ≤ |OB |. By symmetry, we may assume without
loss of generality that A < B. By (v), we know that A < ω < B. The circles OA

and OB are tangent since A and B are successive convergents. See Figure 6. Since
|OQ| ≥ |OA|, the circle OQ cannot fit in the shaded region between OA, OB , and the
x-axis; hence we cannot have A < Q < B.

Figure 6. Not enough room between OA and OB.

If Q > B, then OQ lies to the right of the line x = B because |OQ| ≤ |OB |. Hence
the line x = ω fails to intersect OQ, contradicting the assumption that Q is silver or
gold for ω. Thus we must have Q < A.

Assuming Q < A, let O′
B be a copy of OB reflected across the vertical line x = A.

We distinguish three cases according to whether O′
B is disjoint from OB , is tangent to

OB , or intersects OB in two points, as illustrated in Figure 7.
In the first case, let P be the path, shown in bold in Figure 7a, that starts on the

x-axis, moves vertically upward to the leftmost point of OA, then moves upward along
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Figure 7. The Ford circle OB and its clone O′
B .

an arc of OA to the point of tangency between OA and O′
B , then upward along an arc

of O′
B to the rightmost point of O′

B , then vertically upward from there. Since |OA| ≤
|OQ| ≤ |OB |, the circle OQ lies in the region formed by P and all the points to the left
of P . This region does not extend to the right of the vertical line x = A, so the same
is true of OQ. Thus, the line x = ω is disjoint from OQ, so Q cannot be silver or gold
for ω. Exactly the same argument applies in the case when O′

B is tangent to OB .
If O′

B intersects OB in two points, we modify the definition of the path P so that it
first proceeds upward to the leftmost point of OA, then moves along OA to the tangency
point with O′

B , then along O′
B to its lower intersection point with OB , then along OB

to the leftmost point of OB , then vertically upward. Again OQ lies entirely within the
region to the left of P inclusive of P itself. See Figure 7c. Hence, OQ does not extend
to the right of the line x = A that passes through the intersection points of OB and O′

B ,
and we have the same contradiction as before, and the proof for (vi) is complete.

Observe that item (vi) of the proposition is best possible in the sense that some
irrationals ω have bronze approximations that fail to be convergents in the con-
tinued fraction for ω. For example, suppose the continued fraction for ω begins
[0; 1, 2, m3, m4, . . .]; so ω lies between 2

3 and 3
4 , and its first few convergents are

0, 1, 2
3 . The fraction 1

2 is then bronze for ω but fails to be a convergent.

5. PANNING FOR GOLD. To pan for gold fractions in a veritable river-like
sequence of convergents for any particular ω, we first use our preceding work, gath-
ering several prospector tools as the following proposition. Fortunately we may pan
with confidence knowing that there’s gold in them thar hills—a phrase made famous
by the cartoon character Yosemite Sam—because every existing gold fraction is a
convergent by Proposition 7(vi). Algebraic proofs for statements 1, 2, and 3 appear in
[5, Theorems 171, 183, 195]; and proofs for statements 2 and 3 also appear in [11, Satz
2.14, 2.15].

Proposition 8 (Bronze, Silver, and Gold convergents). Let Ci be the regular conver-
gents for ω. For every i ≥ 0,

1. Ci is bronze for every i ≥ 0.
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2. Either Ci or Ci+1 is silver.
3. At least one of each triple Ci, Ci+1, Ci+2 is gold.
4. If mi+1 ≥ 2, then Ci is silver.
5. If mi+1 ≥ 3, then Ci is gold.
6. If neither Ci nor Ci+1 is gold, then Ci+2 is gold and both mi+1 and mi+2 are 1.

Proof. Let Ci = miCi−1 ⊕ Ci−2 = c

d
and B = (1 + mi)Ci−1 ⊕ Ci−2 = a

b
, and A =

B ⊕ Ci . We have B = Ci ⊕ Ck−1, and A = Ci ⊕ B = Ci ⊕ Ci ⊕ Ci−1 = 2Ci ⊕ Ci−1.
For statements 1 and 2, by Proposition 7(iii) and 7(v), we know that Ci and Ci+1 are
Farey neighbors sandwiching ω and that the denominator of Ci is no more than that
of Ci+1. The desired results follow by Corollary 3. For statement 3, we know that at
least one of Ci , Ci+1, and Ci ⊕ Ci+1 is gold by Corollary 6. If neither Ci nor Ci+1

is gold then Ci ⊕ Ci+1 is gold, which means it is a convergent of ω by property (vi);
and by property (ii) it must be convergent Ci+2. For statement 4, suppose that Ci fails
to be silver. By properties 2 and (vi), we know that B must be silver and that B is a
convergent of ω, which means that B = Ci+1, making mi+1 = 1, a contradiction. For
statement 5, suppose that Ci fails to be gold. By property 3 either B or A is gold,
which again means that mi+1 is either 1 or 2, a contradiction. For statement 6, suppose
that neither Ci nor Ci+1 is gold. However, we know that either B or A is gold. If B

is gold, then B = Ci+1, a contradiction. So A must be gold. The fraction A cannot be
Ci+1. Because A = 2Ci ⊕ Ci−1 = B ⊕ Ci , we have B = Ci+1 and A = Ci+2, making
mi+1 = 1 = mi+2.

Observe that properties 4 and 5 of the proposition are in accord with the well-
known observation that truncating an infinite continued fraction just before a large
partial denominator gives a particularly good rational approximation. For example, a
gold convergent for π from Example 10 below is 355

113 = [3; 7, 15, 1]. Furthermore,
as an inverse-like statement for properties 4 and 5, Corollary 6 implies that if a par-
tial denominator mi+1 is 1, then the three consecutive convergents Ci−1, Ci , and Ci+1

cannot all be gold.

Example 9 (Finding natural gold). With ω = e, as Leonhard Euler discovered in
1744 [1, 3], we have e = [2; 1, 2, 1, 1, 4, 1, 1, 6, . . .]. To generate these partial
denominators, we start with m0. Solving e = sC−1 ⊕ C−2 gives s = e, and m0 =
�s = 2, making C0 = 2

1 . Solving e = sC0 ⊕ C−1 gives s ≈ 1.392, m1 = 1, and C1 =
3
1 . And so on. In Table 1, results are given up through k = 10. The last column gives
the assay report of convergent Ck. For example, with k = 5, the last column is S, which
means 87

32 is silver. By statement 5 of Proposition 8, we see that C4, C7, and so on are
all gold. And a natural conjecture is that the pattern of metals in the convergents of e

has period 3, namely, bronze-gold-silver, or BGS, starting with C0, C1, C2.

Example 10 (A patternless assay). With π = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, . . .],
the assay report is GGBGBGBGBGBGG, whose continuation we conjecture—as per-
haps might be expected—is nonperiodic. Does π have a convergent that is but silver?

Example 11 (Finding radical gold). We consider
√

2 = [1; 2, 2, 2, . . .],
√

3 =
[1; 1, 2, 1, 2, . . .],

√
5 = [2; 4, 4, 4, . . .],

√
7 = [2; 1, 1, 1, 4, 1, 1, 1, 4, . . .],

and
√

10 = [3; 6, 6, 6, . . .]. By property 5 of Proposition 8, the convergents Ci of√
5 and

√
10 are all gold for all i ≥ 1. By property 4, all Ci for

√
2 are silver; by

calculation, the first six convergents are all gold; so perhaps they are all gold. By
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Table 1. Finding gold for e, where B ≡ bronze, S ≡ silver, G ≡ gold.

k Ck s mk assay

0 2
1 2.718 2 B

1 3
1 1.392 1 G

2 8
3 2.550 2 S

3 11
4 1.819 1 B

4 19
7 1.220 1 G

5 87
32 4.536 4 S

6 106
39 1.867 1 B

7 193
71 1.153 1 G

8 1264
465 6.528 6 S

9 1457
536 1.8945 1 B

10 2721
1001 1.117 1 G

properties 1 and 4, all Ci for
√

3 are bronze and C2i+1 are all silver; by calculation it
appears that C2i+1 are all gold and C2i are but bronze.

To demonstrate this
√

3 conjecture, we show that C2i are but bronze, which, by
property 3, implies that C2i+1 are gold for all i ≥ 0. We know that C0 = 1 is bronze
and C1 = 2 is gold. For i ≥ 0, our strategy is to show that that 2q2

2i |
√

3 − p2i

q2i
| > 1

where pi and qi are defined in (2) of Proposition 7(ii). Observe that q0 = 1; q1 = 1;
q2 = 2q1 + q0 = 3; q3 = q2 + q1; q4 = 2q3 + q2 = 3q2 + 2q1; and so on. We write
these equations as the matrix equations

[
q2i+1

q2i+2

]
=

[
1 1
2 3

]i [
q1

q2

]
= MDiM−1

[
1
3

]
,

where M and D are the matrix of eigenvectors and the diagonal matrix of eigenval-

ues of the matrix

[
1 1
2 3

]
. Similarly,

[
p2i+1

p2i+2

]
= MDiM−1

[
2
5

]
. Via a CAS,

we have p2i+2 = 1
2
√

3
((2 − √

3)i(−9 + 5
√

3) + (2 + √
3)i(9 + 5

√
3)) and q2i+2 =

1
2
√

3
((2 − √

3)i(−5 + 3
√

3) + (2 + √
3)i(5 + 3

√
3)). The left-hand side of our con-

dition for bronze, 2q2
2i+2|

√
3 − C2i+2| > 1, simplifies as

2

3

((
26

√
3 − 45

) (
2 − √

3
)2i + √

3

)
,

which decreases monotonically to 2
√

3
3 ≈ 1.15 > 1. Therefore, yes, the convergents of√

3 forever oscillate between bronze and gold.
Finally, by property 5, the

√
7 convergents C4i+3 are all gold; does

√
7 have a pattern

that cycles with period 4?
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We close with one last example and a general question.

Lemma 12 (Gold in the golden mean). For φ = 1+√
5

2 = [1; 1, 1, 1, . . .], each C2i+1

is gold and each C2i+2 is but silver for all integers i ≥ 0.

Proof. The convergents for φ are the ratios of successive Fibonacci numbers, fi :
1, 1, 2, 3, 5, 8, and so on, where f0 = 1, f1 = 1, f2 = 2, and the convergents of
φ are Ci = fi+1

fi
: 1, 2, 3

2 ,
5
3 , and so on. The following assay tool list is a few properties

of these convergents, where n is a positive integer. Proofs for each of these statements
may be found, for example, in [7]; for completeness, we prove them anew.

a. Cn > φ when n is odd, and Cn < φ when n is even.
b. Cassini’s identity: |f 2

n+1 − fnfn+2| = 1 for all nonnegative integers n.
c. |φ − Cn| = 2

fn(
√

5fn+2fn+1−fn)
for all n ≥ 1.

d. |φ − Cn| < 1
2f 2

n
for all n > 1.

e. When n is odd, 0 < Cn − φ < 1√
5f 2

n
. When n is even, φ − Cn > 1√

5f 2
n

.

For (a), note that C0 = 1 < φ; and the result follows by Proposition 7(v). For (b),
|f 2

1 − f0f2| = |12 − 1 · 2| = 1. Suppose that |f 2
n − fn−1fn+1| = 1 for some n > 0.

Since fn+1 = fn + fn−1, we have 1 = |f 2
n − fn−1fn+1| = |f 2

n − (fn+1 − fn)fn+1|,
which we rewrite as

|f 2
n − f 2

n+1 + fnfn+1| = |f 2
n+1 − fn(fn + fn+1)| = |f 2

n+1 − fnfn+2|.
For (c),

|φ − Cn| = |√5fn − (2fn+1 − fn)|
2fn

=
1
2 |5f 2

n − (4f 2
n+1 − 4fn+1fn + f 2

n )|
fn(

√
5fn + 2fn+1 − fn)

,

whose numerator by (b) is

2|f 2
n+1 − fn+1fn − f 2

n | = 2|f 2
n+1 − fn(fn+1 + fn)| = 2|f 2

n+1 − fnfn+2| = 2,

giving the desired result. For (d), the inequality is true for n = 2 and n = 3 by direct
evaluation. Let n > 3. Since

√
5fn − fn > fn and fn + 2fn+1 ≥ 4fn, from (c) we have

|φ − Cn| = 2

fn(
√

5fn + 2fn+1 − fn)
<

2

fn(fn + 2fn+1)
<

1

2f 2
n

.

For (e), by (a) with n odd, fn+1 > fn φ is equivalent to
√

5fn+2fn+1−fn

2 >
√

5fn. This
inequality together with (c) yields the desired result. By (a) with n even, φ > Cn is
equivalent to 2

√
5fn >

√
5fn + 2fn+1 − fn, which is the same as 2√

5fn+2fn+1−fn
>

1√
5fn

. This inequality and (c) yield the desired result. Finally, properties (d) and (e)
give the desired result—which, with respect to the simple continued fraction algorithm,
means that the golden mean is half silver!

Observe that our main result, Corollary 6, rules out φ from having three consecutive
gold convergents, but it does not exclude two out of every three consecutive conver-
gents being gold for some ω. Can you find an irrational number with repeating assay
sequence BGG or SGG?
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The irrational number α is said to be quadratic if it is the root of a quadratic with
integer coefficients. The golden mean and the radicals of Example 11 are such num-
bers. In 1770, Joseph Lagrange showed that ω’s partial denominators are periodic if
and only if ω is quadratic [8]. A natural conjecture is that the sequence of any quadratic
irrational number’s convergents is periodic with respect to being bronze, silver, and
gold. Since using the partition benchmarks for bronze, silver, and gold as given by
1, 1

2 , and 1√
5

seems somewhat arbitrary, one might intuitively doubt this conjecture.
However, we leave the reader with a last question: before your CAS’s precision in rep-
resenting real numbers fizzles, can you find a quadratic irrational that fails to suggest
convergent periodicity with respect to bronze, silver, and gold?
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