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Abstract. As McKinsey and Tarski showed, the Stone representation theorem for Boolean
algebras extends to algebras with operators to give topological semantics for (classical) propositional
modal logic, in which the “necessity” operation is modeled by taking the interior of an arbitrary
subset of a topological space. In this article, the topological interpretation is extended in a natural
way to arbitrary theories of full first-order logic. The resulting system of S4 first-order modal logic
is complete with respect to such topological semantics.

It has been known since the work of McKinsey & Tarski (1944) that, by extending the
Stone representation theorem for Boolean algebras, topological spaces provide semantics
to propositional modal logic. Specifically, a necessity operator obeying the rules of the
system S4 can be interpreted by the interior operation in a topological space. This result,
however, is limited to propositional modal logic. The aim of this article is to show how the
topological interpretation can be extended in a very natural way to first-order modal logic.

1. Topological semantics for propositional modal logic. Let us review the topolog-
ical semantics for propositional S4.

1.1 The system S4 of propositional modal logic. Modal logic is the study of logic in
which the words “necessary” and “possible” appear in statements such as

• It is necessary that the square of an integer is not negative.
• It is possible that there are more than 8 planets.

The history of modal logic is as old as that of the study of logic in general and can be
traced back to the time of Aristotle. The contemporary study of modal logic typically treats
modal expressions as sentential operators, in the same way as ¬ is treated. That is, for each
formula ϕ of propositional logic, the following are again formulas:

2ϕ “It is necessary that ϕ.”

3ϕ “It is possible that ϕ.”

Formulas are recursively generated from propositional letters p, q, r , . . . using the propo-
sitional operators �, ⊥, ∧, ∨, →, ¬ as usual, in addition to 2 and 3. Hence, the formulas
of the language include ones such as 2(2p → 3(2q ∧ ¬r)).
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Among various axiom systems providing inference rules for modal operators, the system
S4 of propositional modal logic consists of the rules listed below, in addition to those of
classical propositional logic.1 Here ϕ, ψ are any sentences and � is a propositional con-
stant standing for truth (or it stands for any theorem of propositional logic if the language
is not assumed to have the propositional constant). Also, define 3ϕ = ¬2¬ϕ.

2ϕ � ϕ

2ϕ � 22ϕ

2ϕ ∧2ψ � 2(ϕ ∧ ψ)

� � 2�
ϕ

2ϕ

� ψ

� 2ψ

1.2 Topology. The S4 rules in subsection 1.1 have been known, since McKinsey &
Tarski (1944), to be exactly the rules of the interior operation on topological spaces. Given
a set X , recall that a subset O(X) ⊆ P(X) of its powerset P(X) is said to be a topology
on X if it satisfies the following:

• ∅, X ∈ O(X).
• If U, V ∈ O(X), then U ∩ V ∈ O(X).
• If Ui ∈ O(X) for all i ∈ I , then

⋃
i∈I Ui ∈ O(X) for any index set I .

Such a pair (X,O(X)), or often X itself with O(X) in mind, is called a topological space.
The U ⊆ X lying in O(X) are called open sets of X , and an open set U such that a ∈ U is
called a neighborhood of a. On the other hand, F ⊆ X such that X−F = {x ∈ X | x /∈ F }
is an open set is called a closed set. Now, given a topological space (X,O(X)), define an
interior operation int on P(X) as follows: for any subset A ⊆ X ,

int(A) =
⋃

U⊆A
U∈O(X)

U.

Note that int(A) is open because the union of open sets is open. Thus, int(A) is the
largest of all open sets U contained in A. It follows that any open set U is a fixed point of
int and can be written as an interior, that is, U = int(U ). Moreover, int obeys the following
rules. For any A, B ⊆ X ,

int(A) ⊆ A

int(A) ⊆ int(int(A))

int(A) ∩ int(B) ⊆ int(A ∩ B)

X ⊆ int(X)

A ⊆ B �⇒ int(A) ⊆ int(B).

1 As is common in categorical logic, we use a calculus of binary sequents ϕ � ψ , the basic rules of
which are reflexivity and transitivity of � (cf., e.g., Awodey, 2006, pp. 138f.).
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Here, if we read A, B for sentences and replace X , ∩, ⊆ with �, ∧, �, we can see that these
rules are just the rules of S4. In a similar manner, the closure cl(A) = X − int(X − A)
of A, that is, the smallest closed set containing A, obeys the corresponding S4 rules of 3.

1.3 Topological semantics for propositional S4. Let us now formally define how a
language of propositional modal logic is interpreted in a topological space. Suppose we
are given a language L of propositional modal logic and a topological space (X,O(X)).

Propositional S4 (X,O(X))

ϕ [[ϕ]] ⊆ X

An interpretation [[·]] of L is a mapping from the set of sentences of L to P(X). It
assigns an arbitrary subset [[p]] of X to each atomic sentence p and moreover satisfies
the conditions below for connectives and operators. Here ϕ, ψ , � are the same as before,
while ⊥ is either the propositional constant for falsity or any sentence whose negation is
provable in propositional logic.

[[¬ϕ]] = X − [[ϕ]],

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]],

[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]],

[[�]] = X,

[[⊥]] = ∅,

[[2ϕ]] = int([[ϕ]]).

We then write (X, [[·]]) � ϕ if the interpretation (X, [[·]]) models a sentence ϕ, defined as

(X, [[·]]) � ϕ ⇐⇒ [[ϕ]] = X. (1)

Although we can say “ϕ is true in a model (X, [[·]])” to mean this relation, we should note
that it is not in general the case that one of (X, [[·]]) � ϕ or (X, [[·]]) � ¬ϕ must hold. Also,
note that (X, [[·]]) � ϕ entails (X, [[·]]) � 2ϕ.

As a simple example, consider X = [0, 1], the closed unit interval, and [[p]] = [0, 1),
the half-open interval. Then, (X, [[·]]) � 2(p ∨ ¬p) because

[[2(p ∨ ¬p)]] = int([[p]] ∪ ([0, 1] − [[p]])) = int([0, 1]) = [0, 1].

But (X, [[·]]) � 2p ∨2¬p since

[[2p ∨2¬p]] = int([[p]]) ∪ int([0, 1] − [[p]]) = [0, 1] �= [0, 1].

With this notion of interpretation, the correspondence between the rules of Boolean
operations on sets and those of the propositional connectives, and the rules of the interior
operation and the S4 rules, immediately gives us soundness.

Theorem 1. For any pair of sentences ϕ, ψ of L,

S4 proves ϕ � ψ �⇒ every topological interpretation (X, [[·]]) has [[ϕ]] ⊆ [[ψ]].

In particular,

S4 proves � ϕ �⇒ every topological interpretation (X, [[·]]) has (X, [[·]]) � [[ϕ]].
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The usual converse statement of completeness can be derived as a corollary of the
following even stronger result.

Theorem 2 (McKinsey & Tarski, 1944). For any (consistent) theory T in L containing
S4, there exist a topological space X and an interpretation [[·]] such that any pair of
sentences ϕ, ψ of L satisfies the following:

T proves ϕ � ψ ⇐⇒ [[ϕ]] ⊆ [[ψ]].

Corollary 1. For any pair ϕ, ψ of sentences of L,

S4 proves ϕ � ψ ⇐⇒ [[ϕ]] ⊆ [[ψ]] for every topological interpretation (X, [[·]]).
In particular,

S4 proves � ϕ ⇐⇒ every topological interpretation (X, [[·]]) has (X, [[·]]) � [[ϕ]].

2. Semantics for first-order logic. The goal of this article is to extend the topological
semantics in the foregoing section to first-order modal logic. In this section, we introduce
some notation for the standard semantics of (nonmodal) first-order logic, which will be
convenient for our purposes.

2.1 Denotational interpretation. Suppose we are given a language L in first-order
logic. L has primitive relation symbols Ri (i ∈ I ), function symbols f j ( j ∈ J ), and
constants ck (k ∈ K ). Then, as usual, a structure M = 〈D, Ri

M , f j
M , ck

M 〉i∈I, j∈J,k∈K for
L consists of the following:

• A set D, the “domain of individuals.”
• A subset Ri

M ⊆ Dn of the appropriate n-fold Cartesian product of the domain D
for each n-ary relation symbol Ri .

• A function f j
M : Dn → D for each n-ary function symbol f j .

• An individual ck
M ∈ D for each constant ck .

Given such a structure and elements a1, . . . , an ∈ D, for any formula ϕ(x1, . . . , xn)
with at most the displayed variables x1, . . . , xn free, the relation

M � ϕ[a1, . . . , an]

of modeling a formula is recursively defined as usual.
Now we extend the “denotational” point of view to first-order languages. Whereas we

gave an interpretation [[ϕ]] to sentences ϕ in subsection 1.3, here for first-order logic we
give an interpretation also to formulas containing free variables; so we extend the notation
to include interpretations

[[ x, y | ϕ ]]

of all formulas. Here it is presupposed that no free variables appear in the formula ϕ except
x , y but not that x , y actually appear. To a sentence σ with no free variables, we give [[σ ]]
as we did before. We also give interpretation [[ x̄ | t ]] to a term t (x̄) built up from function
symbols, constants, and variables.

First-order logic M

ϕ(x) [[ x | ϕ ]] ⊆ D
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The interpretation of a formula ϕ is essentially the subset of the model M defined by ϕ:

[[ x̄ | ϕ ]] = {ā ∈ Dn | M � ϕ[ā] } ⊆ Dn .

That is, the set of individuals satisfying ϕ. Then, the following properties are easily derived:

[[ x, y | x = y ]] = {(a, a) ∈ D × D | a ∈ D },
[[ x̄ | R(x̄) ]] = RM ,

[[ x̄ | ϕ ∧ ψ ]] = [[ x̄ | ϕ ]] ∩ [[ x̄ | ψ ]],

[[ x̄ | ¬ϕ ]] = Dn − [[ x̄ | ϕ ]],

[[ x̄ | ∃yϕ ]] = {ā ∈ Dn | (ā, b) ∈ [[ x̄, y | ϕ ]] for some b ∈ D }.
These properties could also be used as conditions to define the interpretation recursively,
skipping � altogether. Then, we would need to define [[ x̄, y | ϕ(x̄) ]] ⊆ Dn+1 also for a
formula ϕ(x̄) which does not contain the free variable y, which can be done simply by

[[ x̄, y | ϕ ]] = {(ā, b) ∈ Dn+1 | M � ϕ[ā] }
= [[ x̄ | ϕ ]] × D.

Similarly, when a term t (x̄) has n arguments, its interpretation [[ x̄ | t ]] is the function
f : Dn → D recursively defined from f M , cM in the expected way.

The definition of interpretation of formulas can be naturally extended to the case of
n = 0 for D0 = {∗}, any 1-element set. That is, while a subset [[ x̄ | ϕ ]] of Dn is given for
a formula ϕ, the interpretation of a sentence σ is in a similar manner given as a subset [[σ ]]
of D0 (a “truth value”) as follows:

[[σ ]] = {∗ ∈ D0 | M � σ } =
⎧⎨⎩1 = {∗} = D0 if M � σ,

0 = ∅ ⊆ D0 if M � σ.

Note that as in (1) we then have, for any formula ϕ with at most x̄ free,

M � ϕ ⇐⇒ [[ x̄ | ϕ ]] = Dn . (2)

Now, in terms of [[·]], the usual soundness and completeness of first-order logic are
expressed as follows.

Theorem 3. Given a language L of first-order logic, for any pair of formulas ϕ, ψ of L
with at most x̄ free,

ϕ � ψ is provable ⇐⇒ every interpretation M has [[ x̄ | ϕ ]] ⊆ [[ x̄ | ψ ]].

In particular,

� ϕ is provable ⇐⇒ every interpretation M has M � ϕ.

2.2 Interpretation and mappings. Some of the conditions that recursively define
interpretation can be considered in terms of images of mappings. We sum up this fact
in this subsection because it will be useful shortly. First, let us introduce some notation for
images. Given a mapping f : X → Y and subsets A ⊆ X and B ⊆ Y , the direct image
of A and the inverse image of B under f shall be written, respectively, as follows:

f (A) = { f (a) ∈ Y | a ∈ A },
f −1(B) = {a ∈ X | f (a) ∈ B }.
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Next, we define, for each n, the projection pn : Dn+1 → Dn to be (ā, b) �→ ā. In
particular, p0 : D → D0 = {∗} has p0(b) = ∗ for all b ∈ D. Then, we have

[[ x̄ | ∃yϕ ]] = {ā ∈ Dn | (ā, b) ∈ [[ x̄, y | ϕ ]] for some b ∈ D } = pn([[ x̄, y | ϕ ]]),

[[ x̄, y | ψ ]] = [[ x̄ | ψ ]] × D = pn
−1([[ x̄ | ψ ]]).

For example, [[ y | ϕ ]] and its image under the projection p0, namely, p0([[ y | ϕ ]]) =
[[∃yϕ]], are in the relation illustrated as follows:

[[ y | ϕ ]] �= ∅ p0([[ y | ϕ ]]) = [[∃yϕ]] = {∗} �= ∅

M � ϕ[b] for some b ∈ M M � ∃yϕ.

Also, because in general a mapping f : X → Y always has f (A) ⊆ B ⇐⇒ A ⊆
f −1(B), we have

[[ x̄ | ∃yϕ ]] = pn([[ x̄, y | ϕ ]]) ⊆ [[ x̄ | ψ ]]

⇐⇒ [[ x̄, y | ϕ ]] ⊆ pn
−1([[ x̄ | ψ ]]) = [[ x̄, y | ψ ]],

which corresponds to the rule ∃yϕ � ψ ⇐⇒ ϕ � ψ of first-order logic. Here the
“eigenvariable” condition that y does not occur freely in ψ is expressed by [[ x̄ | ψ ]]
making sense.2

Moreover, the substitution of terms can also be expressed by inverse images. Given a
formula ϕ(z) and term t (ȳ), with the obvious notation for substitution one has

[[ ȳ | ϕ(t (ȳ)) ]] = {b̄ ∈ Dm | M � ϕ(t (b̄)) }
= {b̄ ∈ Dm | [[ ȳ | t ]](b̄) ∈ [[ z | ϕ(z) ]] }
= [[ ȳ | t ]]−1([[ z | ϕ(z) ]]).

3. Topological semantics for first-order modal logic. We now extend the topolog-
ical semantics reviewed in subsection 1.3 to first-order logic. To do so, we require the
notion of a sheaf over a topological space, which combines the topological semantics of
propositional modal logic with the set-valued semantics of first-order logic in section 2.
and gives a very natural semantics for first-order modal logic.

2 The observation expressed here that the existential quantifier ∃ is left adjoint to inverse image
under projection is due to Lawvere (1969).
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3.1 Sheaves. First, recall that a map f : X → Y of topological spaces is said to be
continuous if f −1(V ) ⊆ X is open in X for every open set V ⊆ Y . Moreover, f is called
a homeomorphism if f has a continuous inverse map f −1 : Y → X , and then X and Y are
said to be homeomorphic. For a homeomorphism f : X → Y , open sets U = f −1(V ) of
X and V = f (U ) of Y also correspond bijectively.

Definition 1. A sheaf over a topological space X consists of a topological space F
and a local homeomorphism π : F → X, meaning that every point a of F has some
neighborhood U � a such that π(U ) is open and the restriction π |U : U → π(U ) of π to
U is a homeomorphism.3 F is called the total space, and π is called the projection from
F to X.

Taking a concrete example, R (with its usual topology) and π : R → S1 such that
π(a) = ei2πa = (cos 2πa, sin 2πa) form a sheaf over the circle S1 (with the subspace
topology in R2). We may say that R draws a spiral over S1, so that, for every a ∈ R,
a neighborhood U small enough is homeomorphic to its image π(U ).

One of the properties of sheaves important for the goal of this article is that a local
homeomorphism π : F → X is not only continuous but also an open map, which means
that π(U ) ⊆ X is an open subset of X for every open U ⊆ F .

3 The notion of a sheaf is sometimes defined in terms of the notion of a functor, in which case the
version used here is called an étale space. The functorial notion is equivalent to the version here
(in the category-theoretical sense). This article only considers sheaves over topological spaces, but
the definition using functors enables one to define sheaves more generally over various categories
(see, e.g., Mac Lane & Moerdijk, 1992, for detail) and obtain more general models of modal
logic.
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It is also important that we can consider sheaves from the following viewpoint. Given a
sheaf π : F → X , take any point p of X and define the “stalk” Fp ⊆ F at p as follows:

Fp = π−1({p}).

Fp is also called the fiber of F over p; it is shown in the figure above to be a single line
over p. Because fibers do not intersect each other, F is partitioned into fibers, so that the
underlying set |F | of the space F can be recovered by taking the disjoint union of all fibers.
That is, we can write

|F | =
∑
p∈X

Fp,

where
∑

indicates that the union is disjoint. By the local homeomorphism condition, each
fiber Fp forms a discrete subspace of F . In the context of semantics for first-order modal
logic, we may think of the fibers as “possible worlds” which “change continuously” over
the space X .

Let us mention maps of sheaves as well. A map f from a sheaf (F, πF ) to another
(G, πG) is simply a continuous map f : F → G such that πG ◦ f = πF , that is, such that
the following diagram commutes.

F

πF

f

=
G

πG

X

Thus, f respects the fibers; that is, the underlying map f can be written as a bundle of
maps f p : Fp → G p from fibers to fibers:

f =
∑
p∈X

f p :
∑
p∈X

Fp −→
∑
p∈X

G p.

It is an important fact that maps of sheaves are necessarily also local homeomorphisms and
hence are open maps.

Last, for a sheaf π : F → X , the diagonal map � : F → F ×X F defined to be
a �→ (a, a) is a map of sheaves and hence is an open map.4 Therefore, in particular,

4 F ×X F is the fibered product of the sheaf F over the space X . See Appendix A. for the definition
of products of sheaves.
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the image

�(F) = {(a, a) ∈ F ×X F | a ∈ F } ⊆ F ×X F

of F is an open subset of F ×X F . We note that, for any topological space F , if π : F → X
is an open continuous map with open diagonal map � : F → F ×X F , then π : F → X
is a sheaf over X .

3.2 Topological semantics in terms of sheaves. Speaking figuratively, the extension
of topological semantics using sheaves corresponds to taking the “product” of topological
semantics for propositional modal logic and denotational semantics for first-order logic.
The topology, or the “horizontal axis,” on a space X and a sheaf F gives interpretation to
the modal operator 2, and each fiber, along the “vertical axis,” plays the role of a “possible
world,” a set providing the first-order interpretation.

Consider a language L gained by adding the modal operator 2 to a language of first-
order logic. Here, in defining formulas recursively, the usual conditions coming from first-
order logic do not discriminate formulas containing modality from ones not (e.g., in the
same way that (¬ϕ)[t/z], which is gained by substituting the term t for the free variable z in
¬ϕ, and ¬(ϕ[t/z]), by applying ¬ to ϕ[t/z], are the same formula, we identify (2ϕ)[t/z]
and 2(ϕ[t/z]) as the same formula 2ϕ[t/z]). Then, in a similar manner to subsection 2.1,
we define a structure to interpret formulas of L as consisting of the following:5

• A topological space X and a sheaf π : D → X over it.
• An arbitrary subset [[Ri ]] ⊆ Dn of the fibered product, for each n-ary relation

symbol Ri .
• A map [[ f j ]] : Dn → D of sheaves, for each n-ary function symbol f j .
• A map [[ck]] : X → D of sheaves from the sheaf D0 = X , for each constant ck .

Decomposing this structure into fibers, we can see that, for each point p ∈ X , the fiber
Dp gets a standard L-structure

〈Dp, [[Ri ]]p, [[ f j ]]p, [[ck]]p〉i∈I, j∈J,k∈K

of first-order logic as we saw in subsection 2.1. (Here [[Ri ]]p ⊆ Dni
p , [[ f j ]]p : D

n j
p → Dp,

[[ck]]p ∈ Dp.)

So, as for the first-order part of the language, we have a fiberwise denotational interpreta-
tion [[·]]p, each as in subsection 2.1. We can extend the interpretation [[·]] to all formulas

5 See Appendix A. for the definition of products of sheaves.
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[[ x̄ | ϕ ]], first fiberwise as in subsection 2.1 to get [[ x̄ | ϕ ]]p and then by “summing
over p”:

[[ x̄ | ϕ ∧ ψ ]] =
∑
p∈X

[[ x̄ | ϕ ∧ ψ ]]p

=
∑
p∈X

([[ x̄ | ϕ ]]p ∩ [[ x̄ | ψ ]]p)

=
⎛⎝∑

p∈X

[[ x̄ | ϕ ]]p

⎞⎠ ⋂ ⎛⎝∑
p∈X

[[ x̄ | ψ ]]p

⎞⎠ = [[ x̄ | ϕ ]] ∩ [[ x̄ | ψ ]].

Taking a sentence ∃yϕ, for example, its interpretation is

[[∃yϕ]] =
∑
p∈X

[[∃yϕ]]p ∼= { p ∈ X | [[∃yϕ]]p �= ∅ } = π([[ y | ϕ ]]) ⊆ X.

As can be seen in this example, the interpretation of a sentence σ with no free variables is
given as a subset of D0 = X , the “worlds” p ∈ X at which σ is true.

Finally, we of course use the topology of X and D to interpret the modal operator 2,
that is,

[[ x̄ | 2ϕ ]] = intDn ([[ x̄ | ϕ ]]) ⊆ Dn,

[[2σ ]] = intX ([[σ ]]) ⊆ X.

Since sentences are interpreted by subsets of X , we define in a similar manner to (1) and
(2) of subsections 1.3 and 2.1, respectively, as follows.

Definition 2. A formula ϕ is true in an interpretation M = (π : D → X, [[·]]) if
[[ x1, . . . , xn | ϕ ]] = Dn, that is,

M � ϕ ⇐⇒ [[ x1, . . . , xn | ϕ ]] = Dn .

In particular, a sentence σ is true if [[σ ]] = X, that is,

M � σ ⇐⇒ [[σ ]] = X.

Note that this specification does indeed agree with the “classical” one of McKinsey and
Tarski at the level of propositional modal logic.
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3.3 The system FOS4 of first-order modal logic. The topological semantics given in
the previous subsection is a very natural extension of the topological semantics for the
system S4 of propositional modal logic to first-order logic, which can be seen from the fact
that a system that is sound and complete with respect to it can be gained by simply taking
the union of the axioms and rules of first-order logic and S4.

Definition 3. System FOS4 consists of the following axioms and rules:

1. All axioms and rules of (classical) first-order logic. In applying schemes, formulas
containing the modal operator and ones not are not distinguished. Especially in the
following axiom of identity, ϕ may contain the modal operator.

x = y � ϕ(x) → ϕ(y).

2. The rules of S4 propositional modal logic. That is, for any formulas ϕ, ψ and for �
as before,

2ϕ � ϕ

2ϕ � 22ϕ

2ϕ ∧2ψ � 2(ϕ ∧ ψ)

� � 2�
ϕ

2ϕ

� ψ

� 2ψ

Listing some theorems of FOS4, not only do we have 2∃y2ϕ � ∃y2ϕ, but also the
following proof is available.

2ϕ � ∃y2ϕ
22ϕ � 2∃y2ϕ
2ϕ � 2∃y2ϕ

∃y2ϕ � 2∃y2ϕ

The last step satisfies the eigenvariable condition that y does not occur freely in the right
formula. In terms of the topological interpretation, this means that the image [[ x̄ | ∃y2ϕ ]]
under pn of an open set [[ x̄, y | 2ϕ ]] is a fixed point of int (since int([[ x̄ | ∃y2ϕ ]]) =
[[ x̄ | 2∃y2ϕ ]] = [[ x̄ | ∃y2ϕ ]]), that is, it is an open set. This tells us that projections pn

need to be open maps in order that the semantics makes FOS4 sound.
Similarly, continuity is required to model substitution so that, for any formula ϕ(z) and

term t (ȳ), we will have the required equality indicated by ! below:

[[ ȳ | 2ϕ(t (ȳ)) ]]

[[ ȳ | 2(ϕ[t (ȳ)/z]) ]] [[ ȳ | (2ϕ)[t (ȳ)/z] ]]

int([[ ȳ | t ]]−1([[ z | ϕ ]]))
!

[[ ȳ | t ]]−1(int([[ z | ϕ ]]))

Also, by substituting 2x = z for ϕ(z) in the first-order axiom x = y � ϕ(x) → ϕ(y) of
identity, we have

x = y � 2x = x → 2x = y,
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while � 2x = x is gained by the S4 rule from another axiom of identity, namely, � x = x .
Therefore, x = y �� 2x = y is provable. Thus, the diagonal

[[ x, y | x = y ]] = {(a, a) ∈ D ×X D | a ∈ D } = �(D) ⊆ D ×X D,

which interprets identity, has to be open, and therefore the diagonal map � has to be an
open map. This, together with the necessity of projections being open continuous maps,
shows that the soundness of FOS4 for topological semantics actually requires the use of
sheaves. Indeed, we have the following.

Theorem 4. For any formulas ϕ and ψ ,

FOS4 proves ϕ � ψ �⇒ [[ x̄ | ϕ ]] ⊆ [[ x̄ | ψ ]] for every
topological interpretationM = (π : D → X, [[·]]).

Moreover, we also have completeness in the strong form of section 1.

Theorem 5. For any (consistent) theory T ofL containing FOS4, there exists a topological
interpretationM = (π : D → X, [[·]]) such that, for any pair of formulas ϕ, ψ of L with
no free variables except x̄ , the following holds.

T proves ϕ � ψ ⇐⇒ [[ x̄ | ϕ ]] ⊆ [[ x̄ | ψ ]].

In particular, for any sentence σ ,

T proves � σ ⇐⇒ M � σ.

Corollary 2. For any pair of formulas ϕ, ψ of L with no free variables except x̄ ,

[[ x̄ | ϕ ]] ⊆ [[ x̄ | ψ ]] for every topological interpretationM �⇒ FOS4 proves ϕ � ψ.

Moreover, for any sentence σ ,

[[σ ]] = X for every topological interpretationM �⇒ FOS4 proves � σ.

The proof of Theorem 5 is beyond the scope of this article, but we provide a sketch as
an appendix for the curious reader.

4. Examples of the interpretation. To help understand how the combination of topol-
ogy and quantification works in this semantics, let us take an example of a concrete inter-
pretation.

4.1 Necessary properties of individuals. Let us recall the example of a sheaf given in
subsection 3.1, that is, the infinite helix over the circle with projection π : R+ → S1 such
that π(a) = (cos 2πa, sin 2πa), except that we now take D = R+ = {a ∈ R | 0 < a },
the positive reals instead of R. Thus, we have a spiral infinitely continuing upward but
with an open downward end at 0; this is also a sheaf. So let M = (π, [[·]]) interpret the
binary relation symbol � by the “no greater than” relation of real numbers on this sheaf as
follows:

[[ x, y | x � y ]]p = {(a, b) ∈ R+2 | a � b and π(a) = π(b) = p }.
That is, in each fiber R+

p, the order is just the usual one on the reals.
Then, consider the truth of the following sentences under this interpretation:

∃x∀y.x � y “There exists x such that x is the least.” (3)

∃x2∀y.x � y “There exists x such that x is necessarily the least.” (4)
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Now [[ x | ∀y.x � y ]] = {a ∈ R | 0 < a � 1 } = (0, 1] is the set of points of R+ that are
the least in their own fibers. Thus, we have [[ ∃x∀y.x � y ]] = π((0, 1]) = S1 and (3) true
inM. On the other hand,

[[ x | 2∀y.x � y ]] = int([[ x | ∀y.x � y ]]) = int((0, 1]) = {a ∈ R | 0 < a < 1 } = (0, 1).

So [[ ∃x2∀y.x � y ]] = π((0, 1)) = S1 − {(1, 0)} �= S1, that is, (4) is not true.

In this way, 1 ∈ R+ is “actually the least” in its fiber (or “possible world”) R+
(1,0) =

{1, 2, 3, . . .} but not “necessarily the least.” Intuitively speaking, 1 is the least in the world
R+

(1,0), but any neighborhood of this world, no matter how small a one we take, contains
some world ({ε, 1 + ε, 2 + ε, 3 + ε, . . .} for ε > 0) in which 1 is no longer the least. Note
that here we used the notion “1 in worlds near by” for explanation. Even though 1 only
exists in R+

(1,0), this notion still makes sense because the local homeomorphism property
of the sheaf allows us to find an associated point in any other world in a sufficiently small
neighborhood.

Finally, note that, because [[∃x∀y.x � y]] = S1, we have [[2∃x∀y.x � y]] =
int([[∃x∀y.x � y]]) = int(S1) = S1 and so

M � 2∃x∀y.x � y,

M � ∃x2∀y.x � y,

whence

M � 2∃x∀y.x � y → ∃x2∀y.x � y.

That is, this example provides a countermodel for a so-called Barcan formula of the form
“2∃ → ∃2.”

Also, note that [[ x, y | x � y ]] is open, since it is the union of the open diagonal
[[ x, y | x = y ]] and [[ x, y | x < y ]], which is open as the restriction of the open half-plain

{(a, b) | a, b ∈ R and a < b }
to the fibered product R+2. Therefore, [[ x, y | 2x � y ]] = int([[ x, y | x � y ]]) =
[[ x, y | x � y ]]. It follows that [[∃x∀y.2x � y]] = [[∃x∀y.x � y]] = S1 and so

M � ∃x∀y2x � y,

M � ∃x2∀y.x � y,

whence

M � ∃x∀y2x � y → ∃x2∀y.x � y.
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That is, M is also a countermodel for the Barcan formula of the form “∀2 → 2∀.” (In
contrast, “converse Barcan” “2∀ → ∀2” and “∃2 → 2∃” are provable in FOS4 in a
similar manner to the proof in p. 156 and are valid in the topological semantics.)

4.2 Defining functions and names. In first-order logic, when a structureM satisfies
∀x̄∃!yϕ(x̄, y) (“each x̄ has a unique y such that ϕ(x̄, y)”), a new function symbol fϕ can
be introduced into the language and interpreted in M so that M � ∀x̄∀y( fϕ(x̄) = y ↔
ϕ(x̄, y)). Does a corresponding fact hold in FOS4?

Consider the “codiscrete” topological space consisting of 2 points, that is, X = {p, q},
O(X) = {X,∅}. Moreover, consider the sheaf over X consisting of 2 copies of X , that is,

D = X × {0, 1} = {(p, 0), (p, 1), (q, 0), (q, 1)}, O(D) = {D, X × {0}, X × {1},∅},
with π : D → X defined as (u, i) �→ u. On this sheaf, let us set the interpretation of an
(n + 1)-ary relation symbol R so that

[[ x̄, y | R(x̄, y) ]]p = Dn
p × {(p, 0)}, [[ x̄, y | R(x̄, y) ]]q = Dn

q × {(q, 1)}.
Call the model M = (π : D → X, RM). It follows for each u = p, q, because
[[ x̄ | ∃!y R(x̄, y) ]]u = Dn

u , thatM � ∀x̄∃!y R(x̄, y).
Then, however, we cannot define a function symbol f satisfying M � ∀x̄∀y( f (x̄) =

y ↔ R(x̄, y)), which entails M � ∀x̄∀y2( f (x̄) = y ↔ R(x̄, y)). This is implied
by the fact that M does not satisfy the consequent of the theorem ∀x̄∀y2( f (x̄) =
y ↔ R(x̄, y)) � ∀x̄∃!y2R(x̄, y) of FOS4, where ∀x̄∃!y2R(x̄, y) is short for
∀x̄∃y∀z(y = z ↔ 2R(x̄, z)). The same thing can be expressed in terms of the inter-
pretation as follows. The interpretation [[ f ]] : Dn → D of such f must satisfy

[[ f ]](a) =
{

(p, 0) if a ∈ Dn
p,

(q, 1) if a ∈ Dn
q ,

that is, such [[ f ]] yields [[ f ]]−1(X × {0}) = Dn
p /∈ O(Dn) for the open subset X × {0} of

D, which means that [[ f ]] would not be continuous and hence not a map of sheaves. The
same thing can be said about names with n = 0. That is, even whenM � ∃!yϕ(y) holds, a
name c such that M � ∀y(c = y ↔ ϕ(y)) cannot be defined in general. For example,
M in the previous subsection has ∃!x∀y.x � y true but cannot have a name for such x .

On the other hand, not only in this sheaf but in any interpretationM, a function symbol
fϕ can be defined so thatM � ∀x̄∀y( fϕ(x̄) = y ↔ 2ϕ(x̄, y)) ifM � ∀x̄∃!y2ϕ(x̄, y).
To sum up, in FOS4, a necessary description defines a name, which then has a continuous
denotation, whereas a contingent description need not have a corresponding denotation.

5. Historical remark.
5.1 Comparison to other semantics for modal logic. Let us compare the topological

semantics to other preceding semantics for quantified S4. To prepare ourselves for the
comparison, it is helpful to first review the relation between the following 3 semantics for
propositional S4:

(i) Kripke semantics in which possible worlds are preordered (i.e., connected by reflex-
ive and transitive accessibility relation R). Propositions are subsets of the possible
worlds.

(ii) Topological spaces: Propositions are subsets of the space (as in (i), whence each
point can be regarded as a possible world), and 2 is interpreted by the interior
operation int.
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(iii) Topological Boolean (or topo-Boolean) algebras, that is, Boolean algebras equipped
with an operation int satisfying the S4 rules. Each point x is a proposition, and the
relation x � y means x implying y.

(ii) and (iii) are both called topological semantics. (iii) is sometimes called an algebraic
semantics as well. (i) is (properly) subsumed by (ii) by taking the Alexandroff (right)
topology: let {y | x Ry } be a basic open set for each world x and generate topology
with unions of such basic open sets. (Of course, not every space is of this kind.) (ii) is
in turn subsumed by (iii): The Boolean algebra of subsets of a space with int forms a
topo-Boolean algebra, whereas McKinsey & Tarski (1944) showed that any topo-Boolean
algebra can occur as a subalgebra of the algebra of a space.6

Several ideas have been proposed to extend the semantics above to quantified modal
logic. One is to extend (iii) by completing the algebra so that it is equipped with arbitrary
meets (for ∀) and joins (for ∃) to interpret the quantifiers. This completion was shown
by Rasiowa & Sikorski (1963) to give a semantics with respect to which first-order S4 is
complete.7

Another idea is to extend (i) or (ii) by equipping each possible world with a domain
of individuals. The current notion of a Kripke sheaf derives from early work in topos
theory (Lawvere, 1969, 1970) and is defined to be a presheaf over a preorder (W, R) (S4
Kripke frame), namely, a functor from (W, R) to the category Sets of sets. This means
that a Kripke sheaf D over an S4 Kripke frame (W, R) assigns a set D(x), “domain of
individuals,” to each world x ∈ W and functorially provides a mapping Dxy : D(x) →
D(y) for each x, y ∈ W such that x Ry; then for a ∈ D(x), we can read Dxy(a) ∈ D(y) to
be “a in the world y.”8 Such a fibration of preorders can be equivalently written as follows:9

a Kripke sheaf consists of 2 S4 Kripke frames (W, R) and (D, ρ) and a p-morphism10

π : (D, ρ) → (W, R) satisfying

π(a)Rx �⇒ ∃!b[aρb ∧ π(b) = x]. (∗)

Then, π−1(x) ⊆ D corresponds to D(x). π(a) is “the world where the individual a lives,”
and b in (∗) is Dπ(a)x (a). QS4= (quantified S4 with equality) is known to be complete with
respect to Kripke sheaves (see, e.g., Shehtman & Skvortsov, 1990).

The topological semantics of this article is the extension of (ii) analogous to Kripke
sheaves extending (i). In other words, the relation between (i) and (ii) is preserved in
the relation between Kripke sheaves and topological semantics: any Kripke sheaf π :
(D, ρ) → (W, R) becomes a local homeomorphism by taking the Alexandroff topology

6 McKinsey & Tarski (1944) showed the dual result for closure algebras.
7 As Rasiowa & Sikorski (1963) showed, the completeness result does not require all meets and

joins.
8 Such a functorial (presheaf) definition of Kripke sheaves is found in Ghilardi (1989), Ghilardi &

Meloni (1988), and Goldblatt (1979). Note that Dxy need not be an injection, whereas each Dxy
is an inclusion map in a conventional Kripke frame with a domain of individual.

9 See Shehtman & Skvortsov (1990).
10 A map π : (D, ρ) → (W, R) of Kripke frames is called a p-morphism when

aρb �⇒ π(a)Rπ(b)

π(a)Rx �⇒ ∃b[aρb ∧ π(b) = x]

and are satisfied.
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both at (W, R) and at (D, ρ).11 More precisely, indeed, the category of Kripke sheaves
over a preorder P and monotone maps respecting fibers is exactly the topos of all sheaves
over the space P with the Alexandroff topology. The approach of this article also extends
the Kripke sheaf approach by extending the interpretation to functions and names, which
have been ignored in the existing semantics in terms of Kripke sheaves;12 in this sense, the
semantics is for first-order, but not just quantified, modal logic.

5.2 Categorical and topos-theoretic formulations. Local homeomorphisms over a
topological space X (as in (ii)) form the category LH/X , which is well known to be
categorically equivalent to the category Sh(X) of functorial sheaves over X , that is functors
from the complete Heyting algebra O(X) (an instance of (iii)) to Sets satisfying certain
conditions. By virtue of this fact, the semantics of this article in terms of local homeomor-
phisms can also be formulated in terms of functorial sheaves to be a version of functorial
semantics.

Moreover, since LH/X and Sh(X) as well as their underlying (discrete) structures
Sets/|X | and Sh(|X |) are elementary topoi, a topos-theoretic formulation is also available
for the semantics of this article by considering the forgetful functor id∗ : Sh(X) →
Sets/|X |. In this formulation, we take a sheaf F and the Boolean algebra SubSets/|X |(id∗F)
∼= P(|F |) of subsets of F , which is equipped with the interior operation int coming from
the topology of F to interpret the modal operator 2.13

id∗ and its right adjoint id∗ constitute the geometric morphism id : Sets/|X | → Sh(X),
which can also be viewed as induced by the (continuous) identity map id : |X | → X . This
morphism helps us push forward with the topos-theoretic point of view, because int can be
obtained from the comonad id∗ ◦ id∗, as in:

int A id∗id∗ A

id∗ ◦ id∗ Sets/|X |
id∗
⊥ Sh(X)
id∗

id∗F
id∗ηF

id∗id∗id∗F.

Although the point-set topological formulation presented in this article is more ele-
mentary and perspicuous, the topos-theoretic one is more useful for generalizations. For
example, we see from it that any geometric morphism of topoi (not just id∗ � id∗) induces

11 The parallelism is even deeper than mentioned here. With the condition (∗) dropped, any
p-morphism π : (D, ρ) → (W, R) is called a Kripke bundle (see Shehtman & Skvortsov
(1990)); topologically speaking, it is an open bundle (open continuous map) with the Alexandroff
topology. If semantics includes not only Kripke sheaves but also Kripke bundles, the substitution
of terms is lost. In parallel to this, the substitution is lost if topological semantics includes not only
sheaves (local homeomorphisms) but also open bundles, and the discussion in pp. 12f. illuminates
why.

12 In the Kripke framework, Dragalin’s (1979) semantics dealt with functions and names, but for
intuitionistic first-order logic. This logic does not require the general sheaf structure (which FOS4
or even QS4= does); instead Dragalin used Kripke frames with increasing domains (with which
FOS4 and QS4= are incomplete). In such a semantics, the identity of individuals across worlds is
given, or in other words, we need not (and Dragalin did not) make explicit the fact that functions
and names have to be interpreted by maps of sheaves or monotone maps.

13 Indeed, the authors originally presented (Awodey & Kishida, 2005) the topological interpretation
of this paper under this topos-theoretic formulation; this paper has served to reformulate it purely
in terms of elementary (point-set) topology.
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a modality on its domain.14 This immediately suggests natural models for intuitionistic
modal logic, typed modal logic, and higher order modal logic.

One conceptual difference between the local-homeomorphism formulation and the func-
torial one is that, in the former, 2 is interpreted by topological interior, as it was originally
in McKinsey & Tarski (1944). In this sense, the local-homeomorphism semantics can be
properly called the extension of McKinsey and Tarski’s topological semantics. In the same
way that (ii) connects the 3 approaches (i)–(iii), the topological semantics of this article
(extending (ii)) subsumes Kripke sheaf semantics (the extension of (i)) on one hand and
can be seen to categorically subsume the algebraic topological semantics (Rasiowa &
Sikorski (1963), extending (iii)) on the other hand,15 thereby giving unification to these
three approaches to first-order modal logic.

Historically, extending (iii) by functorial sheaves is already suggested in Shehtman &
Skvortsov (1990).16 Also, Hilken & Rydeheard (1999) formulated the sheaf extension of
(ii) and stated its completeness as an open problem. The completeness of first-order S4 with
respect to the topological semantics is first shown by the authors of this article (Awodey
& Kishida, in preparation) but in the strong form of Theorem 5, that is, the existence of a
canonical model for every theory containing FOS4.
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Aldo Antonelli, Alasdair Urquhart, and Richard Zach, of the Banff Workshop “Mathemat-
ical Methods in Philosophy” for the opportunity to present this research.

A. Products of sheaves. Here we review the standard definition of (fibered) products
of sheaves (cf. Mac Lane & Moerdijk, 1992). We first need to recall some basic definitions
in general topology.

Given finitely many topological spaces X1, . . . , Xn , we can introduce a topology on the
cartesian product X1 × · · · × Xn by declaring products

U1 × · · · × Un ⊆ X1 × · · · × Xn

of open sets U1 ⊆ X1, . . . , Un ⊆ Xn to be basic open sets and thereby defining the union of
any number of those basic open sets to be an open set. This topology is called the product
topology.

Given a topological space (X,O(X)) and any subset S ⊆ X , we can define another
topological space (S,O(S)), called a subspace of (X,O(X)) by setting:

O(S) = {U ∩ S | U ∈ O(X) }.

14 See Reyes (1991), Reyes & Zolfaghari (1991), and Makkai & Reyes (1995) for a more general
setting of interpreting modal logics in terms of geometric morphisms.

15 See Fourman & Scott (1979) for how such subsumption can be formulated.
16 Shehtman & Skvortsov (1990, pp. 109f.), although it is not mentioned what logic is given by the

extension.
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Now let us define the product of sheaves. The product of sheaves πF : F → X and
πG : G → X is in general not the product space F × G of topological spaces F and G;
instead, we take the product “over X ,” written F ×X G. In the same way that the underlying
set of a sheaf is a bundle of fibers, the underlying set of a product of sheaves is given as a
bundle of products of fibers. Thus, given

|F | =
∑
p∈X

Fp and |G| =
∑
p∈X

G p,

we set

|F ×X G| =
∑
p∈X

(Fp × G p) = {(a, b) ∈ F × G | πF (a) = πG(b) }.

This is called a fibered product. Since this set |F ×X G| is a subset of F × G, we can then
define the topology on F ×X G to be the subspace topology of the product topology on
F × G.

The projection π : F ×X G → X (i.e., from the total space to the base space) maps
(a, b) ∈ Fp × G p to p. One can show that this projection π : F ×X G → X is a
local homeomorphism if both πF and πG are. We can also consider the projections pF :
F ×X G → F and pG : F ×X G → G (from the product to the components), which map
(a, b) ∈ Fp × G p to a ∈ Fp and b ∈ G p, respectively. Then, of course π = πF ◦ pF =
πG ◦ pG . In sum, schematically, we have the situation

F ×X G

pF

pG
G

πG

Fp × G p

pFp

pG p
G p Fq × Gq

pFq

pGq
Gq

= + + · · ·
F πF

X Fp {p} Fq {q}

The n-fold product F×X · · ·×X F of a sheaf π : F → X over X is written πn : Fn → X .
We write Fn

p for the fiber (Fn)p = (Fp)
n . When n = 0, F0 is X itself, because the 0-fold

product of each fiber Fp of F is a singleton F0
p = {∗}:

F0 =
∑
p∈X

{∗} ∼=
∑
p∈X

{p} = X.

Hence, the projection π0 : F0 → X is the identity map.

B. Sketch of a completeness proof. Here we sketch a proof for Theorem 5, namely,
the completeness of FOS4 with respect to the topological semantics. See Awodey & Kishida
(in preparation) for the details.

Theorem 5. For any (consistent) theory T in a first-order language L and containing
FOS4, there exists a topological interpretationM = (π : D → X, [[·]]) such that any pair
of formulas ϕ, ψ of L with no free variables except x̄ satisfies the following:

T proves ϕ � ψ ⇐⇒ [[ x̄ | ϕ ]] ⊆ [[ x̄ | ψ ]].

To sketch our proof, it is illuminating to first review a proof for the topological com-
pleteness of propositional S4, because our proof extends the essential idea of that case.
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Theorem 2. For any (consistent) theory T in a propositional language L and containing
S4, there exists a topological interpretation (X, [[·]]) such that any pair of sentences ϕ, ψ
of L satisfies the following:

T proves ϕ � ψ ⇐⇒ [[ϕ]] ⊆ [[ψ]].

Proof of Theorem 2 (sketch). Consider the Lindenbaum algebra B ofT, which is a Boolean
algebra equipped with the operation b : [ϕ] �→ [2ϕ]. Next, take the set U of ultrafilters in
B and the Stone representation ·̂ : B → P(U ). That is,

[̂ϕ] = {u ∈ U | [ϕ] ∈ u }.
The map ·̂ is an injective Boolean homomorphism. Next, topologize U with basic open
sets [̂2ϕ] for all formulas ϕ. Then, int([̂ϕ]) = [̂2ϕ] for the interior operation int of this
topology.

B

b

·̂

=
P(U )

int

B ·̂ P(U )

Finally, give an interpretation in U to a sentence ϕ by [[ϕ]] = [̂ϕ]; this is then a topological
interpretation for which we have the following:

T proves ϕ � ψ ⇐⇒ [ϕ] � [ψ] ⇐⇒ [[ϕ]] ⊆ [[ψ]].

�
Note that the topology defined in the proof above coincides with the usual Stone space

topology on U if 2 is trivial, that is, ϕ �� 2ϕ.
More importantly, we should note that each ultrafilter u in B can be considered a model

of T, that is, u � ϕ if T proves � ϕ, where we write u � ϕ to mean [ϕ] ∈ u. In other
words, the essential idea of the proof above is to take the collection of all (propositional)
models of T and give it the topology with basic open sets defined by extensions of all 2ϕ.

Now, given any consistent theory T in a first-order modal language L, our proof extends
this key idea by first taking a sufficiently large set M0 of first-order models of T in the
following way. Consider the nonmodal first-order language

L = L ∪ {2ϕ | ϕ is a formula of L }
given by adding to L an n-ary basic relation symbol 2ϕ for each formula ϕ of L with
exactly n free variables. Then, Gödel’s completeness theorem for first-order logic yields a
class M �= ∅ of structures M for L such that, for any formula ϕ,

T proves � ϕ ⇐⇒ M � ϕ for all M ∈ M.

While M may be too large to be a set, the Löwenheim–Skolem theorem implies that there
is a cardinal number λ such that the setM0 = {M ∈ M | ||M || � λ } still satisfies

T proves � ϕ ⇐⇒ M � ϕ for all M ∈M0.

This M0, equipped with a projection π :
∑

M∈M0

|M | → M0 for |M | the domains of

models M , is our first approximation to the topological interpretation of T required in
Theorem 5.
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M0, unfortunately, cannot in general be topologized so that π is a sheaf in the re-
quired way. To secure the necessary sheaf condition, we need to “label”M0 so that every
a ∈

∑
M∈M0

|M | has a name in the language. So let us extend the language L to

L∗ = L ∪ {ci | i < λ }
by adding λ-many new constant symbols. Then, consider the following collection of struc-
tures for L∗:

M = {M f | M ∈M0 and f : λ� |M | is a surjection },
where M f is the expansion of M to L∗ with ci

M f = f (i) for all i < λ. We then have the
following result for the theory T∗ ofM: for every formula ϕ of L,

T proves � ϕ ⇐⇒ T∗ proves � ϕ ⇐⇒ M f � ϕ for each M f ∈M.

We can then show that, if we topologizeM and
∑

M∈M
|M | with the extensions of2 formulas

as basic open sets, then π :
∑

M∈M
|M | → M is a sheaf and indeed is a topological

interpretation as claimed in Theorem 5.
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