A LOCAL MAZUR-ULAM THEOREM

OSAMU HATORI

Abstract. We prove a local version of the Mazur-Ulam theorem.

1. Introduction

In this paper we consider isometries between subsets of normed spaces. The Mazur-Ulam theorem asserts that an isometry from a normed space onto a normed space is real-linear up to translation (cf. [3, 4]). An isometry from a normed space into a normed space need not be real-linear up to translation (cf. [1]). An isometry from an open set U_{1} of a normed space onto an open set U_{2} need not be extended to a real-linear map up to translation (see Example 2.3). We show that if U_{1} is star-shaped, then the isometry is extended to a real-linear map up to translation between the underlying normed spaces. We also consider maps defined on a subset of a normed space which is not necessarily open.

Throughout the paper B denotes a real normed space. For a subset X of $B, \operatorname{Int}(X)$ is the interior of X. A star-shaped subset K with a center c of B is a set which satisfies that $t c+(1-t) x \in K$ for every $x \in K$ and $0 \leq t \leq 1$. Let $a \in B$ and $\varepsilon>0$. The open ball $\{x \in B:\|x-a\|<\varepsilon\}$ is denoted by $B_{\varepsilon}(a)$ and $\overline{B_{\varepsilon}(a)}$ its closure in B. For a pair a and b in B the set $\{x \in B: t a+(1-t) b, 0 \leq t \leq 1\}$ is said to be a segment between a and b and is denoted by $[a, b]$.

2. Isometries between open sets

We begin by showing a preliminary lemma. We prove it by making use of an idea of Väisälä 4]

Lemma 2.1. Let $c \in B$ and a map $\psi: B \rightarrow B$ be defined as $\psi(z)=2 c-z$ Suppose that L is a non-empty bounded subset of B such that $c \in L$ and $\psi(L)=L$. If \mathcal{T} is a surjective isometry from L onto itself. Then $\mathcal{T}(c)=c$.

[^0]Proof. Let W be the set of all surjective isometries from L onto itself. Note that W is not empty since the identity function is in W. Let

$$
\lambda=\sup \{\|g(c)-c\|: g \in W\}
$$

Since L is bounded $\lambda<\infty$. We will show that $\lambda=0$. Suppose that $g \in W$. Let $g^{*}=g^{-1} \circ \psi \circ g$. Then $g^{*} \in W$. Hence

$$
\begin{aligned}
\lambda \geq\left\|g^{*}(c)-c\right\|=\left\|g^{-1} \circ \psi \circ g(c)-c\right\| & \\
& =\|\psi \circ g(c)-g(c)\|=2\|g(c)-c\| .
\end{aligned}
$$

It follows that $\lambda \geq 2 \lambda$ since g can be chosen arbitrary, hence $\lambda=0$.
A real vector space with a metric $d(\cdot, \cdot)$ satisfying $d(a+u, b+u)=d(a, b)$ for all a, b, u, and for which addition and scalar multiplication are jointly continuous is called a metric real vector space.

Lemma 2.2. Let \mathcal{B}_{1} be a real normed space and \mathcal{B}_{2} a metric real vector space with a metric $d(\cdot, \cdot)$. Suppose that U_{1} and U_{2} are non-empty open subsets of \mathcal{B}_{1} and \mathcal{B}_{2} respectively. Suppose that \mathcal{T} is a surjective isometry $\left(d(\mathcal{T}(a), \mathcal{T}(b))=\|a-b\|\right.$ for every $\left.a, b \in U_{1}\right)$ from U_{1} onto U_{2} and $f, g \in U_{1}$. If f and g satisfy the equation $(1-r) f+r g \in U_{1}$ for every r with $0 \leq r \leq 1$, then the equality

$$
\mathcal{T}\left(\frac{f+g}{2}\right)=\frac{\mathcal{T}(f)+\mathcal{T}(g)}{2}
$$

holds.
Proof. Let $h, h^{\prime} \in U_{1}$. Suppose that there exists $\varepsilon>0$ which satisfies that $\frac{\left\|h-h^{\prime}\right\|}{2}<\varepsilon$, and

$$
\begin{gathered}
\left\{a \in \mathcal{B}_{1}:\|a-h\|<\varepsilon,\left\|a-h^{\prime}\right\|<\varepsilon\right\} \subset U_{1} \\
\left\{u \in \mathcal{B}_{2}: d(u, \mathcal{T}(h))<\varepsilon, d\left(u, \mathcal{T}\left(h^{\prime}\right)\right) \|<\varepsilon\right\} \subset U_{2}
\end{gathered}
$$

We will show that $\mathcal{T}\left(\frac{h+h^{\prime}}{2}\right)=\frac{\mathcal{T}(h)+\mathcal{T}\left(h^{\prime}\right)}{2}$. Set $r=\frac{\left\|h-h^{\prime}\right\|}{2}$ and let

$$
\begin{gathered}
L_{1}=\left\{a \in \mathcal{B}_{1}:\|a-h\|=r=\left\|a-h^{\prime}\right\|\right\}, \\
L_{2}=\left\{u \in \mathcal{B}_{2}: d(u, \mathcal{T}(h))=r=d\left(u, \mathcal{T}\left(h^{\prime}\right)\right)\right\} .
\end{gathered}
$$

Set also $c_{1}=\frac{h+h^{\prime}}{2}$ and $c_{2}=\frac{\mathcal{T}(h)+\mathcal{T}\left(h^{\prime}\right)}{2}$. Then we have $\mathcal{T}\left(L_{1}\right)=L_{2}, c_{1} \in$ $L_{1} \subset U_{1}$, and $L_{2} \subset U_{2}$. Let

$$
\psi_{2}(y)=2 c_{2}-y \quad\left(y \in \mathcal{B}_{2}\right)
$$

Then ψ_{2} is an isometry and $\psi_{2}\left(L_{2}\right)=L_{2}$.
Let $Q=\mathcal{T}^{-1} \circ \psi_{2} \circ \mathcal{T}$. Then Q is well-defined and is a surjective isometry from L_{1} onto itself. Then by Lemma 2.1 $Q\left(c_{1}\right)=c_{1}$. Henceforth $\mathcal{T}\left(c_{1}\right)=c_{2}$.

We assume that f and g are as described. Let

$$
K=\{(1-r) f+r g: 0 \leq r \leq 1\} .
$$

Since K and $\mathcal{T}(K)$ are compact, there is $\varepsilon>0$ with

$$
\begin{gathered}
\inf \left\{\|a-b\|: a \in K, b \in \mathcal{B}_{1} \backslash U_{1}\right\}>\varepsilon \\
\inf \left\{d(u, v): u \in \mathcal{T}(K), v \in \mathcal{B}_{2} \backslash U_{2}\right\}>\varepsilon
\end{gathered}
$$

Then for every $h \in K$ we have

$$
\left\{a \in \mathcal{B}_{1}:\|a-h\|<\varepsilon\right\} \subset U_{1}
$$

and

$$
\left\{u \in \mathcal{B}_{2}:\|u-\mathcal{T}(h)\|<\varepsilon\right\} \subset U_{2} .
$$

Choose a natural number n with $\frac{\|f-g\|}{2^{n}}<\varepsilon$. Let

$$
h_{k}=\frac{k}{2^{n}}(g-f)+f
$$

for each $0 \leq k \leq 2^{n}$. By the first part of the proof we have

$$
\begin{equation*}
\mathcal{T}\left(h_{k}\right)+\mathcal{T}\left(h_{k+2}\right)-2 \mathcal{T}\left(h_{k+1}\right)=0 \tag{k}
\end{equation*}
$$

holds for $0 \leq k \leq 2^{n}-2$. For $0 \leq k \leq 2^{n}-4$, adding the equations $(k), 2$ times of $(k+1)$, and $(k+2)$ we have

$$
\mathcal{T}\left(h_{k}\right)+\mathcal{T}\left(h_{k+4}\right)-2 \mathcal{T}\left(h_{k+2}\right)=0
$$

whence the equality

$$
\mathcal{T}\left(\frac{f+g}{2}\right)=\frac{\mathcal{T}(f)+\mathcal{T}(g)}{2}
$$

holds by induction on n.
An isometry between open sets of normed spaces need not be extended to a linear map up to translation.

Example 2.3. Let $\mathcal{X}=\{x, y\}$ be a compact Hausdorff space consisting of two points and $C(\mathcal{X})$ denote the Banach algebra of all complex-valued continuous functions on \mathcal{X}. Let

$$
\mathcal{U}=\{f \in C(\mathcal{X}):\|f\|<1\} \cup\left\{f \in C(X):\left\|f-f_{0}\right\|<1\right\}
$$

where $f_{0} \in C(\mathcal{X})$ is defined as $f_{0}(x)=0, f_{0}(y)=10$. Suppose that

$$
\mathcal{T}: \mathcal{U} \rightarrow \mathcal{U}
$$

is defined as $\mathcal{T}(f)=f$ if $\|f\|<1$ and $\mathcal{T}(f)=\tilde{f}$ if $\left\|f-f_{0}\right\|<1$, where

$$
\tilde{f}(t)= \begin{cases}-f(t), & t=x \\ f(t), & t=y\end{cases}
$$

Then \mathcal{T} is an isometry from \mathcal{U} onto itself, while it cannot be extended to a real linear isometry up to translation.

3. Sufficient conditions for real-Linearity

Theorem 3.1. Let B_{1} and B_{2} be real normed spaces. Let U_{1} be a non-empty star-shaped open subset of B_{1}. Suppose that $T: U_{1} \rightarrow B_{2}$ is an isometry such that $T\left(U_{1}\right)$ is open in B_{2}. Then there exists a surjective real-linear isometry \tilde{T}_{0} from B_{1} onto B_{2} and $u \in B_{2}$ such that

$$
T(a)=\tilde{T}_{0}(a)+u \quad(a \in U)
$$

holds.
Proof. Let a_{0} be a center of U_{1}; i.e., $\left[a_{0}, x\right] \subset U_{1}$ for every $x \in U_{1}$. Let $\varphi: B_{1} \rightarrow B_{1}$ be defined as $\varphi_{1}(x)=x+a_{0}\left(x \in B_{1}\right)$ and $\varphi_{2}: B_{2} \rightarrow B_{2}$ defined as $\varphi_{2}(x)=x-T\left(a_{0}\right)\left(x \in B_{2}\right)$. Then $\varphi_{2} \circ T \circ \varphi_{1}: U_{1}-a_{0} \rightarrow B_{2}$ is an isometry such that $\varphi_{2} \circ T \circ \varphi_{1}\left(U_{1}-a_{0}\right)$ is open in B_{2}. We will show that $\varphi_{2} \circ T \circ \varphi_{1}$ is extended to a surjective real-linear isometry \tilde{T}_{0} from B_{1} onto B_{2}. It will follow that the conclusion holds. Let $V_{1}=U_{1}-a$ and $T_{0}=\varphi_{2} \circ T \circ \varphi_{1}$. There is $r>0$ with $B_{3 r}(0) \subset V_{1}$. Let $a \in V_{1}$. Since 0 is a center of $V_{1}, t a=t a+(1-t) 0 \in V_{1}$. Then by Lemma 2.2

$$
T_{0}\left(\frac{a}{2}\right)=T_{0}\left(\frac{a+0}{2}\right)=\frac{T_{0}(a)+T_{0}(0)}{2}=\frac{T_{0}(a)}{2}
$$

holds. For every $0 \leq s_{1} \leq 1$ and $0 \leq s_{2} \leq 1, t\left(s_{1} a\right)+(1-t)\left(s_{2} a\right) \in V_{1}$, hence

$$
T_{0}\left(\frac{s_{1} a+s_{2} a}{2}\right)=\frac{T_{0}\left(s_{1} a\right)+T_{0}\left(s_{2} a\right)}{2}
$$

holds. Applying the above equation and by induction on n

$$
T_{0}\left(\frac{m}{2^{n}} a\right)=\frac{m}{2^{n}} T_{0}(a)
$$

holds for every positive integer n and $m=0,1, \ldots, 2^{n}$. It follows that

$$
\begin{equation*}
T_{0}(t a)=t T_{0}(a) \tag{3.1}
\end{equation*}
$$

holds for every $a \in V_{1}$ and $0 \leq t \leq 1$. Let $a, b \in \overline{B_{r}(0)}$. Then $a+b \in$ $B_{3 r}(0) \subset V_{1}$ holds, and $t a+(1-t) b \in \overline{B_{r}(0)} \subset V_{1}(0 \leq t \leq 1)$ and (3.1) imply the equations

$$
\begin{equation*}
T_{0}(a+b)=2 T_{0}\left(\frac{a+b}{2}\right)=2 \times \frac{T_{0}(a)+T_{0}(b)}{2}=T_{0}(a)+T_{0}(b) \tag{3.2}
\end{equation*}
$$

by Lemma 2.2. Define a map $\tilde{T}_{0}: B_{1} \rightarrow B_{2}$ as

$$
\tilde{T}_{0}(x)= \begin{cases}0, & x=0 \\ \frac{\|x\|}{r} T_{0}\left(\frac{r}{\|x\|} x\right), & x \neq 0\end{cases}
$$

We will show that $T_{0}(x)=\tilde{T}_{0}(x)$ for every $x \in V_{1}$. Let $x \in V_{1}$. If $x=0$, then $T_{0}(x)=0=\tilde{T}_{0}(x)$. Suppose that $r \leq\|x\|$. Then by (3.1)

$$
T_{0}\left(\frac{r}{\|x\|} x\right)=\frac{r}{\|x\|} T_{0}(x)
$$

so $\tilde{T}_{0}(x)=T(x)$ holds. Suppose that $x \neq 0$ and $\|x\|<r$. Then

$$
\begin{equation*}
T_{0}(x)=T_{0}\left(\frac{\|x\|}{r} \frac{r}{\|x\|} x\right)=\frac{\|x\|}{r} T_{0}\left(\frac{r}{\|x\|} x\right)=\tilde{T}_{0}(x) \tag{3.3}
\end{equation*}
$$

hold by (3.1).
We will show that

$$
\begin{equation*}
\tilde{T}_{0}(s x)=s \tilde{T}_{0}(x) \tag{3.4}
\end{equation*}
$$

for every $x \in B_{1}$ and $s \in \mathbb{R}$. Let $a \in \overline{B_{r}(0)}$. Then $-a \in \overline{B_{r}(0)}$, and by (3.2) $T_{0}(-a)=-T_{0}(a)$ holds. Let $x \in B_{1}$ and $s \in \mathbb{R}$. If $x=0$ or $s=0$, then $\tilde{T}_{0}(s x)=s \tilde{T}_{0}(x)$ holds. Suppose that $x \neq 0$ and $s>0$. Then

$$
\tilde{T}_{0}(s x)=\frac{\|s x\|}{r} T_{0}\left(\frac{r s}{\|s x\|} x\right)=\frac{s\|x\|}{r} T_{0}\left(\frac{r}{\|x\|} x\right)=s \tilde{T}_{0}(x) .
$$

Suppose that $x \neq 0$ and $s<0$. Then

$$
\tilde{T}_{0}(s x)=\frac{-s\|x\|}{r} T_{0}\left(\frac{-r}{\|x\|} x\right)=\frac{s\|x\|}{r} T_{0}\left(\frac{r}{\|x\|} x\right)=s \tilde{T}_{0}(x)
$$

since $\frac{r}{\|x\|} x \in \overline{B_{r}(0)}$.
We will show that

$$
\begin{equation*}
\tilde{T}_{0}(x+y)=\tilde{T}_{0}(x)+\tilde{T}_{0}(y) \tag{3.5}
\end{equation*}
$$

holds for every $x, y \in B_{1}$. If $x+y=0$, then $y=-x$ and hence (3.5) holds by (3.4). Suppose that $x+y \neq 0$. If $x=0$ or $y=0$, then (3.5) holds since $\tilde{T}_{0}(0)=0$. Suppose that $x \neq 0$ and $y \neq 0$. Then by (3.2) and (3.3)

$$
\begin{array}{r}
\tilde{T}_{0}\left(\frac{r}{\|x\|+\|y\|} x+\frac{r}{\|x\|+\|y\|} y\right)=T_{0}\left(\frac{r}{\|x\|+\|y\|} x+\frac{r}{\|x\|+\|y\|} y\right) \\
=T_{0}\left(\frac{r}{\|x\|+\|y\|} x\right)+T_{0}\left(\frac{r}{\|x\|+\|y\|} y\right) \\
=\tilde{T}_{0}\left(\frac{r}{\|x\|+\|y\|} x\right)+\tilde{T}_{0}\left(\frac{r}{\|x\|+\|y\|} y\right)
\end{array}
$$

follows and (3.5) holds by (3.4).
We will show that \tilde{T}_{0} is a surjection. Let $y \in B_{2}$. Then there is $r_{0}>0$ such that $\frac{y}{r_{0}} \in T_{0}\left(V_{1}\right)$ since $T_{0}\left(V_{1}\right)$ is open and $0=T_{0}(0) \in T_{0}\left(V_{1}\right)$. Then there is $x_{0} \in V_{1}$ with $T_{0}\left(x_{0}\right)=\frac{y}{r_{0}}$. It follows that $\tilde{T}_{0}\left(r_{0} x_{0}\right)=y$.

We will show that \tilde{T}_{0} is an isometry. Let $x \in B_{1}$. If $x=0$, then $\left\|\tilde{T}_{0}(x)\right\|=\|x\|$. Suppose that $x \neq 0$. Then

$$
\tilde{T}_{0}(x)=\frac{\|x\|}{r} \tilde{T}_{0}\left(\frac{r}{\|x\|} x\right)=\frac{\|x\|}{r} T_{0}\left(\frac{r}{\|x\|} x\right)
$$

hence

$$
\left\|\tilde{T}_{0}(x)\right\|=\frac{\|x\|}{r}\left\|T_{0}\left(\frac{r}{\|x\|} x\right)\right\|=\frac{\|x\|}{r}\left\|\frac{r}{\|x\|} x-0\right\|=\|x-0\|=\|x\|
$$

since T_{0} is an isometry and $T_{0}=\tilde{T}_{0}$ on V_{1}. Thus \tilde{T}_{0} is an isometry since \tilde{T}_{0} is linear.

There are two preliminary lemmata for the following corollary. They may be standard, but proofs are included for the sake of completeness.

Lemma 3.2. Suppose that U is a non-empty open subset of B and $p \in B \backslash U$. Then

$$
V_{p, U}=\cup_{x \in U}[p, x] \backslash\{p\}
$$

is an open subset of B.
Proof. Suppose that $x_{0} \in V_{p, U}$. Then there exist $y_{0} \in U$ and $0 \leq t \leq 1$ with $x_{0}=t p+(1-t) y_{0}$. Note that $t<1$ holds, in fact, for $p \notin V_{p, U}$. Since U is open there exists $\varepsilon>0$ with $B_{\varepsilon}\left(y_{0}\right) \subset U$. Then by a simple calculation

$$
B_{(1-t) \varepsilon}\left(x_{0}\right) \subset V_{p, U}
$$

holds. Hence $V_{p, U}$ is open for x_{0} is arbitrary.
Lemma 3.3. Suppose that X is a convex subset of B and $\operatorname{Int}(X) \neq \emptyset$. Then $\operatorname{Int}(X)$ is also convex and the closure $\overline{\operatorname{Int}(X)}$ of $\operatorname{Int}(X)$ contains X.

Proof. We will show that $[a, b] \subset \operatorname{Int}(X)$ for every pair a and $b \operatorname{int} \operatorname{Int}(X)$. Suppose that $a, b \in \operatorname{Int}(X)$. Then there exists an open neighbourhood $U \subset \operatorname{Int}(X)$ of b with $a \notin U$. Then Lemma 3.2 insures that $V_{a, U}$ is open. Since X is convex, $[a, x] \subset X$ for every $x \in U$, hence $V_{a, U} \subset X$, hence $V_{a, U} \subset \operatorname{Int}(X)$ since $V_{a, U}$ is open. It follows that $[a, b] \subset \operatorname{Int}(X)$ since $a \in \operatorname{Int}(X) ; \operatorname{Int}(X)$ is convex.

Let $p \in X$. Let a be any element in $\operatorname{Int}(X)$. Then there exists an open neighbourhood U of a such that $p \notin U \subset \operatorname{Int}(X)$. Hence $V_{p, U} \subset \operatorname{Int}(X)$ since $V_{p, U} \subset X$ for X is convex and $V_{p, U}$ is open by Lemma 3.2. Let $x_{n}=\left(1-\frac{1}{n}\right) p+\frac{1}{n} a$ for each positive integer n. Then $x_{n} \in V_{p, U}$ and $x_{n} \rightarrow p$ as $n \rightarrow \infty$. Then $p \in \overline{\operatorname{Int}(X)}$.

Corollary 3.4. Let B_{1} and B_{2} be real normed spaces. Let X be a convex subset of B_{1} and $\operatorname{Int}(X) \neq \emptyset$. Suppose that $T: X \rightarrow B_{2}$ is isometric and $T(\operatorname{Int}(X))$ is open in B_{2}. Then T is extended to a real-linear isometry up to translation.

Proof. Since the restriction $\left.T\right|_{\operatorname{Int}(X)}: \operatorname{Int}(X) \rightarrow B_{2}$ of T to $\operatorname{Int}(X)$ satisfies the hypotheses of Theorem [3.1, $\left.T\right|_{\operatorname{Int}(X)}$ is extended to a surjective reallinear isometry up to translation $\widehat{\left.T\right|_{\operatorname{Int}(X)}}$ from B_{1} onto B_{2}. Since T and $\left.T\right|_{\operatorname{Int}(X)}$ are isometric and $X \subset \overline{\operatorname{Int}(X)}$ holds by Lemma 3.3, $\left.T\right|_{\operatorname{Int}(X)}=T$ on X.

An isometry from a star-shaped closed subset need not be extended to a real-linear map up to translation.

Example 3.5. Let $\mathbb{R}_{\max }^{2}=\mathbb{R}^{2}$ as real linear spaces and the norm is defined as $\|(x, y)\|=\max \{|x|,|y|\}$ for $(x, y) \in \mathbb{R}_{\max }^{2}$. Let

$$
\begin{gathered}
X_{1}=\left\{(x, y) \in \mathbb{R}_{\max }^{2}:-1 \leq x \leq 0,|y| \leq-x\right\}, \\
X_{2}=\left\{(x, 0) \in \mathbb{R}_{\max }^{2}: 0 \leq x \leq 1\right\}
\end{gathered}
$$

and

$$
X=X_{1} \cup X_{2}
$$

Then X is a star-shaped closed subset of $\mathbb{R}_{\max }^{2}$. Let

$$
T: X \rightarrow \mathbb{R}_{\max }^{2}
$$

be defined as

$$
T((x, y))= \begin{cases}(x, y), & (x, y) \in X_{1} \\ (x, \sin x), & (x, y) \in X_{2} .\end{cases}
$$

Then T is isometry and $T(\operatorname{Int}(X))$ is open in $\mathbb{R}_{\max }^{2}$. On the other hand T is not extended to a linear map since

$$
T(-(1,0))=(-1,0) \neq(-1,-\sin 1)=-T((1,0))
$$

and $T((0,0))=(0,0)$.

References

[1] T. Figiel, On non-linear isometric embedding of normed linear spaces, Bull. Acad. Polon. Sci. Ser. Sci, Math. Astron. Phys., 16(1968), 185-188
[2] O. Hatori, Isometries between groups of invertible elements in Banach algebras, to appear
[3] S. Mazur and S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci, Paris, 194(1932), 946-948
[4] J. Väisälä, A proof of the Mazur-Ulam theorem, Amer. Math. Monthly, $110(7)(2003), 633-635$

Department of Mathematics, Faculty of Science, Nifgata University, Niigata 950-2181 Japan

E-mail address: hatori@math.sc.niigata-u.ac.jp

[^0]: Key words and phrases. normed spaces, isometries, the Mazu-Ulam theorem.
 The author was partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

