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A LOCAL MAZUR-ULAM THEOREM

OSAMU HATORI

Abstract. We prove a local version of the Mazur-Ulam theorem.

1. Introduction

In this paper we consider isometries between subsets of normed spaces.

The Mazur-Ulam theorem asserts that an isometry from a normed space

onto a normed space is real-linear up to translation (cf. [3, 4]). An isom-

etry from a normed space into a normed space need not be real-linear up

to translation (cf. [1]). An isometry from an open set U1 of a normed

space onto an open set U2 need not be extended to a real-linear map up

to translation (see Example 2.3). We show that if U1 is star-shaped, then

the isometry is extended to a real-linear map up to translation between the

underlying normed spaces. We also consider maps defined on a subset of a

normed space which is not necessarily open.

Throughout the paper B denotes a real normed space. For a subset X

of B, Int(X) is the interior of X . A star-shaped subset K with a center c

of B is a set which satisfies that tc + (1 − t)x ∈ K for every x ∈ K and

0 ≤ t ≤ 1. Let a ∈ B and ε > 0. The open ball {x ∈ B : ‖x − a‖ < ε} is

denoted by Bε(a) and Bε(a) its closure in B. For a pair a and b in B the

set {x ∈ B : ta+ (1− t)b, 0 ≤ t ≤ 1} is said to be a segment between a and

b and is denoted by [a, b].

2. Isometries between open sets

We begin by showing a preliminary lemma. We prove it by making use

of an idea of Väisälä [4]

Lemma 2.1. Let c ∈ B and a map ψ : B → B be defined as ψ(z) = 2c− z

Suppose that L is a non-empty bounded subset of B such that c ∈ L and

ψ(L) = L. If T is a surjective isometry from L onto itself. Then T (c) = c.
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Proof. Let W be the set of all surjective isometries from L onto itself. Note

that W is not empty since the identity function is in W . Let

λ = sup{‖g(c)− c‖ : g ∈ W}.

Since L is bounded λ <∞. We will show that λ = 0. Suppose that g ∈ W .

Let g∗ = g−1 ◦ ψ ◦ g. Then g∗ ∈ W . Hence

λ ≥ ‖g∗(c)− c‖ = ‖g−1 ◦ ψ ◦ g(c)− c‖

= ‖ψ ◦ g(c)− g(c)‖ = 2‖g(c)− c‖.

It follows that λ ≥ 2λ since g can be chosen arbitrary, hence λ = 0. �

A real vector space with a metric d(·, ·) satisfying d(a+u, b+u) = d(a, b)

for all a, b, u, and for which addition and scalar multiplication are jointly

continuous is called a metric real vector space.

Lemma 2.2. Let B1 be a real normed space and B2 a metric real vector

space with a metric d(·, ·). Suppose that U1 and U2 are non-empty open

subsets of B1 and B2 respectively. Suppose that T is a surjective isometry

(d(T (a), T (b)) = ‖a− b‖ for every a, b ∈ U1) from U1 onto U2 and f, g ∈ U1.

If f and g satisfy the equation (1−r)f+rg ∈ U1 for every r with 0 ≤ r ≤ 1,

then the equality

T (
f + g

2
) =

T (f) + T (g)

2
holds.

Proof. Let h, h′ ∈ U1. Suppose that there exists ε > 0 which satisfies that
‖h−h′‖

2
< ε, and

{a ∈ B1 : ‖a− h‖ < ε, ‖a− h′‖ < ε} ⊂ U1,

{u ∈ B2 : d(u, T (h)) < ε, d(u, T (h′))‖ < ε} ⊂ U2.

We will show that T (h+h′

2
) = T (h)+T (h′)

2
. Set r = ‖h−h′‖

2
and let

L1 = {a ∈ B1 : ‖a− h‖ = r = ‖a− h′‖},

L2 = {u ∈ B2 : d(u, T (h)) = r = d(u, T (h′))}.

Set also c1 = h+h′

2
and c2 = T (h)+T (h′)

2
. Then we have T (L1) = L2, c1 ∈

L1 ⊂ U1, and L2 ⊂ U2. Let

ψ2(y) = 2c2 − y (y ∈ B2).

Then ψ2 is an isometry and ψ2(L2) = L2.

Let Q = T −1 ◦ψ2 ◦T . Then Q is well-defined and is a surjective isometry

from L1 onto itself. Then by Lemma 2.1 Q(c1) = c1. Henceforth T (c1) = c2.
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We assume that f and g are as described. Let

K = {(1− r)f + rg : 0 ≤ r ≤ 1}.

Since K and T (K) are compact, there is ε > 0 with

inf{‖a− b‖ : a ∈ K, b ∈ B1 \ U1} > ε,

inf{d(u, v) : u ∈ T (K), v ∈ B2 \ U2} > ε.

Then for every h ∈ K we have

{a ∈ B1 : ‖a− h‖ < ε} ⊂ U1

and

{u ∈ B2 : ‖u− T (h)‖ < ε} ⊂ U2.

Choose a natural number n with ‖f−g‖
2n

< ε. Let

hk =
k

2n
(g − f) + f

for each 0 ≤ k ≤ 2n. By the first part of the proof we have

T (hk) + T (hk+2)− 2T (hk+1) = 0 (k)

holds for 0 ≤ k ≤ 2n − 2. For 0 ≤ k ≤ 2n − 4, adding the equations (k), 2

times of (k + 1), and (k + 2) we have

T (hk) + T (hk+4)− 2T (hk+2) = 0,

whence the equality

T (
f + g

2
) =

T (f) + T (g)

2
holds by induction on n. �

An isometry between open sets of normed spaces need not be extended

to a linear map up to translation.

Example 2.3. Let X = {x, y} be a compact Hausdorff space consisting

of two points and C(X ) denote the Banach algebra of all complex-valued

continuous functions on X . Let

U = {f ∈ C(X ) : ‖f‖ < 1} ∪ {f ∈ C(X) : ‖f − f0‖ < 1},

where f0 ∈ C(X ) is defined as f0(x) = 0, f0(y) = 10. Suppose that

T : U → U

is defined as T (f) = f if ‖f‖ < 1 and T (f) = f̃ if ‖f − f0‖ < 1, where

f̃(t) =

{

−f(t), t = x

f(t), t = y.

Then T is an isometry from U onto itself, while it cannot be extended to a

real linear isometry up to translation.
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3. Sufficient conditions for real-linearity

Theorem 3.1. Let B1 and B2 be real normed spaces. Let U1 be a non-empty

star-shaped open subset of B1. Suppose that T : U1 → B2 is an isometry

such that T (U1) is open in B2. Then there exists a surjective real-linear

isometry T̃0 from B1 onto B2 and u ∈ B2 such that

T (a) = T̃0(a) + u (a ∈ U)

holds.

Proof. Let a0 be a center of U1; i.e., [a0, x] ⊂ U1 for every x ∈ U1. Let

ϕ : B1 → B1 be defined as ϕ1(x) = x + a0 (x ∈ B1) and ϕ2 : B2 → B2

defined as ϕ2(x) = x − T (a0) (x ∈ B2). Then ϕ2 ◦ T ◦ ϕ1 : U1 − a0 → B2

is an isometry such that ϕ2 ◦ T ◦ ϕ1(U1 − a0) is open in B2. We will show

that ϕ2 ◦ T ◦ ϕ1 is extended to a surjective real-linear isometry T̃0 from B1

onto B2. It will follow that the conclusion holds. Let V1 = U1 − a and

T0 = ϕ2 ◦ T ◦ ϕ1. There is r > 0 with B3r(0) ⊂ V1. Let a ∈ V1. Since 0 is a

center of V1, ta = ta + (1− t)0 ∈ V1. Then by Lemma 2.2

T0

(a

2

)

= T0

(

a + 0

2

)

=
T0(a) + T0(0)

2
=
T0(a)

2

holds. For every 0 ≤ s1 ≤ 1 and 0 ≤ s2 ≤ 1, t(s1a) + (1 − t)(s2a) ∈ V1,

hence

T0

(

s1a + s2a

2

)

=
T0(s1a) + T0(s2a)

2

holds. Applying the above equation and by induction on n

T0

(m

2n
a
)

=
m

2n
T0(a)

holds for every positive integer n and m = 0, 1, . . . , 2n. It follows that

(3.1) T0(ta) = tT0(a)

holds for every a ∈ V1 and 0 ≤ t ≤ 1. Let a, b ∈ Br(0). Then a + b ∈

B3r(0) ⊂ V1 holds, and ta + (1 − t)b ∈ Br(0) ⊂ V1 (0 ≤ t ≤ 1) and (3.1)

imply the equations

(3.2) T0(a+ b) = 2T0

(

a+ b

2

)

= 2×
T0(a) + T0(b)

2
= T0(a) + T0(b)

by Lemma 2.2. Define a map T̃0 : B1 → B2 as

T̃0(x) =

{

0, x = 0,
‖x‖
r
T0

(

r
‖x‖
x
)

, x 6= 0.
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We will show that T0(x) = T̃0(x) for every x ∈ V1. Let x ∈ V1. If x = 0,

then T0(x) = 0 = T̃0(x). Suppose that r ≤ ‖x‖. Then by (3.1)

T0

(

r

‖x‖
x

)

=
r

‖x‖
T0(x),

so T̃0(x) = T (x) holds. Suppose that x 6= 0 and ‖x‖ < r. Then

(3.3) T0(x) = T0

(

‖x‖

r

r

‖x‖
x

)

=
‖x‖

r
T0

(

r

‖x‖
x

)

= T̃0(x)

hold by (3.1).

We will show that

(3.4) T̃0(sx) = sT̃0(x)

for every x ∈ B1 and s ∈ R. Let a ∈ Br(0). Then −a ∈ Br(0), and by (3.2)

T0(−a) = −T0(a) holds. Let x ∈ B1 and s ∈ R. If x = 0 or s = 0, then

T̃0(sx) = sT̃0(x) holds. Suppose that x 6= 0 and s > 0. Then

T̃0(sx) =
‖sx‖

r
T0

(

rs

‖sx‖
x

)

=
s‖x‖

r
T0

(

r

‖x‖
x

)

= sT̃0(x).

Suppose that x 6= 0 and s < 0. Then

T̃0(sx) =
−s‖x‖

r
T0

(

−r

‖x‖
x

)

=
s‖x‖

r
T0

(

r

‖x‖
x

)

= sT̃0(x)

since r
‖x‖
x ∈ Br(0).

We will show that

(3.5) T̃0(x+ y) = T̃0(x) + T̃0(y)

holds for every x, y ∈ B1. If x + y = 0, then y = −x and hence (3.5) holds

by (3.4). Suppose that x+ y 6= 0. If x = 0 or y = 0, then (3.5) holds since

T̃0(0) = 0. Suppose that x 6= 0 and y 6= 0. Then by (3.2) and (3.3)

T̃0

(

r

‖x‖+ ‖y‖
x+

r

‖x‖ + ‖y‖
y

)

= T0

(

r

‖x‖+ ‖y‖
x+

r

‖x‖+ ‖y‖
y

)

= T0

(

r

‖x‖+ ‖y‖
x

)

+ T0

(

r

‖x‖+ ‖y‖
y

)

= T̃0

(

r

‖x‖+ ‖y‖
x

)

+ T̃0

(

r

‖x‖+ ‖y‖
y

)

follows and (3.5) holds by (3.4).

We will show that T̃0 is a surjection. Let y ∈ B2. Then there is r0 > 0

such that y

r0
∈ T0(V1) since T0(V1) is open and 0 = T0(0) ∈ T0(V1). Then

there is x0 ∈ V1 with T0(x0) =
y

r0
. It follows that T̃0(r0x0) = y.
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We will show that T̃0 is an isometry. Let x ∈ B1. If x = 0, then

‖T̃0(x)‖ = ‖x‖. Suppose that x 6= 0. Then

T̃0(x) =
‖x‖

r
T̃0

(

r

‖x‖
x

)

=
‖x‖

r
T0

(

r

‖x‖
x

)

hence

‖T̃0(x)‖ =
‖x‖

r
‖T0

(

r

‖x‖
x

)

‖ =
‖x‖

r
‖
r

‖x‖
x− 0‖ = ‖x− 0‖ = ‖x‖

since T0 is an isometry and T0 = T̃0 on V1. Thus T̃0 is an isometry since T̃0

is linear. �

There are two preliminary lemmata for the following corollary. They may

be standard, but proofs are included for the sake of completeness.

Lemma 3.2. Suppose that U is a non-empty open subset of B and p ∈ B\U .

Then

Vp,U = ∪x∈U [p, x] \ {p}

is an open subset of B.

Proof. Suppose that x0 ∈ Vp,U . Then there exist y0 ∈ U and 0 ≤ t ≤ 1 with

x0 = tp+ (1− t)y0. Note that t < 1 holds, in fact, for p 6∈ Vp,U . Since U is

open there exists ε > 0 with Bε(y0) ⊂ U . Then by a simple calculation

B(1−t)ε(x0) ⊂ Vp,U

holds. Hence Vp,U is open for x0 is arbitrary. �

Lemma 3.3. Suppose that X is a convex subset of B and Int(X) 6= ∅. Then

Int(X) is also convex and the closure Int(X) of Int(X) contains X.

Proof. We will show that [a, b] ⊂ Int(X) for every pair a and b in Int(X).

Suppose that a, b ∈ Int(X). Then there exists an open neighbourhood

U ⊂ Int(X) of b with a 6∈ U . Then Lemma 3.2 insures that Va,U is open.

Since X is convex, [a, x] ⊂ X for every x ∈ U , hence Va,U ⊂ X , hence

Va,U ⊂ Int(X) since Va,U is open. It follows that [a, b] ⊂ Int(X) since

a ∈ Int(X); Int(X) is convex.

Let p ∈ X . Let a be any element in Int(X). Then there exists an open

neighbourhood U of a such that p 6∈ U ⊂ Int(X). Hence Vp,U ⊂ Int(X)

since Vp,U ⊂ X for X is convex and Vp,U is open by Lemma 3.2. Let

xn = (1− 1
n
)p+ 1

n
a for each positive integer n. Then xn ∈ Vp,U and xn → p

as n→ ∞. Then p ∈ Int(X). �
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Corollary 3.4. Let B1 and B2 be real normed spaces. Let X be a convex

subset of B1 and Int(X) 6= ∅. Suppose that T : X → B2 is isometric and

T (Int(X)) is open in B2. Then T is extended to a real-linear isometry up

to translation.

Proof. Since the restriction T |Int(X) : Int(X) → B2 of T to Int(X) satisfies

the hypotheses of Theorem 3.1, T |Int(X) is extended to a surjective real-

linear isometry up to translation T̃ |Int(X) from B1 onto B2. Since T and

T̃ |Int(X) are isometric and X ⊂ Int(X) holds by Lemma 3.3, T̃ |Int(X) = T on

X . �

An isometry from a star-shaped closed subset need not be extended to a

real-linear map up to translation.

Example 3.5. Let R2
max = R2 as real linear spaces and the norm is defined

as ‖(x, y)‖ = max{|x|, |y|} for (x, y) ∈ R2
max. Let

X1 = {(x, y) ∈ R2
max : −1 ≤ x ≤ 0, |y| ≤ −x},

X2 = {(x, 0) ∈ R2
max : 0 ≤ x ≤ 1}

and

X = X1 ∪X2.

Then X is a star-shaped closed subset of R2
max. Let

T : X → R2
max

be defined as

T ((x, y)) =

{

(x, y), (x, y) ∈ X1,

(x, sin x), (x, y) ∈ X2.

Then T is isometry and T (Int(X)) is open in R2
max. On the other hand T

is not extended to a linear map since

T (−(1, 0)) = (−1, 0) 6= (−1,− sin 1) = −T ((1, 0))

and T ((0, 0)) = (0, 0).

References

[1] T. Figiel, On non-linear isometric embedding of normed linear spaces, Bull. Acad.
Polon. Sci. Ser. Sci, Math. Astron. Phys., 16(1968), 185–188

[2] O. Hatori, Isometries between groups of invertible elements in Banach algebras, to
appear

[3] S. Mazur and S. Ulam, Sur les transformationes isométriques d’espaces vectoriels

normés, C. R. Acad. Sci, Paris, 194(1932), 946–948
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