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MATHEMATICAL NOTES MATHEMATICAL NOTES 

null diagonal. Suppose that the first r columns of the transforming matrix 
are known. These correspond to r mutually perpendicular generators of a 
cone in n-dimensional space. For the (r+ l)-th, we may take any of the 
o n-r-2 generators of the cone which is the intersection of the given cone with 

the sub-space orthogonal to the first r generators. The total number of 
degrees of freedom is therefore 

n-2 
Z (n - r - 2)= (n - l)(n - 2). 

r=O 

Since a Hermitian matrix can be transformed by a unitary matrix into a 
real diagonal form, it is clear that it can also be transformed by a unitary 
matrix into a real symmetric matrix with null diagonal. 

The sum of the squared moduli of the elements of a matrix A is invariant 
under unitary transformations, since it is the trace of AA'. Hence, in par- 
ticular, if A1, A2, A3 are the eigenvalues of a Hermitian matrix A, and 

Al+A2+A3=0, 

then if A is transformed into a real matrix with null diagonal by a unitary 
matrix, the elements of the transform are bounded by the numbers 

?{ (A12 + A22 + A32)}L. 
J. D. WESTON. 

2166. On the formula of the mean. 
It is not an infrequent rider on the formula of the mean 

f(a + h) -f(a)=hf'(a+ Oh) ..............................(1) 

to ask for a proof that, when 0 is independent of both a, h, i.e. is an absolute 
constant, then the functionf must be quadratic or possibly linear. The usual 
proof relies on partial differentiation in a, h and presupposes f differentiable 
to the second or even the third order. It is, however, possible to obtain the 
result without further differentiation, and, in fact, we may replace (1) by the 
less informative identity 

f(a + h) -f(a) = h (a + Oh), .............................(2) 

where all that I suppose is thatf, 4 are defined for all real values of the variable 
and are one-valued: this simplifies the essential argument. 

Interchanging a, a + h in (2) gives 

f(a) -f(a + h)= - h{a + (1 - O)h}, 
so that 

(a + Oh) = O{a + (1 - 0)h}. 

If 0 =, we can solve (in a, h) 

a+Oh=x, a+(1-O)h=y 

for arbitrary x, y. This gives +(x) = +(y) for any x, y, and so i(x) is a con- 
stant (A, say). Then, from (2), 

f(a + h) - A (a + h) =f(a) - Aa, 

so that f(x) - Ax is again a constant (B, say). Thus, when 0 ; i, f(x) has the 
linear form Ax + B (and 0 is irrelevant). 

When 0 = , the defining formula is 

f(a + h) -f(a) = ha(a + ih). .............................(3) 
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Giving (a, h) the pairs of values (a, - h), (a - h, 2h) we also have 

f(a - h) -f(a) = - hob(a - jh), f(a + h) -f(a - h) - 2hf(a). 

Eliminatingf between these three identities gives 

# (a + Ih) + 0 (a - Ih)= 2 (a) . ...................(......... 4) 
and therefore 

#(a + ih) + ? (a - ih) = 0 (a + ik) + (a - 'k) . .................. (5) 
since h is absent from the right of (4). 

With a = (x? + t), h = x+ t, k = x - t we can rewrite (5) as 

0 (. + t) - 0 (x = . (t) - o(0) =_.(t), say. ...... (6) 
Then, from (3), 

f(x + y) -f(x) -ff(y) ?f(O) = Y{/ (X + jy) - 0 (1y)} - yOb(x). 

By symmetry in x, y this must also equal xb (y), and so 

i/,(x)/x = f (y)/y = a constant (A, say). 
Thus, from (6), 

# (x + t) - 0 (x) = At, 
which, as in the first part, gives 

O (x) = Ax + B, 

with B a second constant. Then, from (3) again, 

f(x) -f(y) = (x - y)q(.x + 2y) 
= ( - y)(JA (x + y) +- B}, 

i.e. f(x) - JAx2 - Bx =f (y) - jAy2 - By = a constant (C, say). 
This gives f(x) the quadratic form JAx2 ? Bx + C, and completes the proof. 

T. W. CHAIJNDY. 
2167. Pan-Magic squares of even order. 
N. and W. J. Chater have proved (Mathematical Gazette, XXXTTT, No. 304) 

that the determinant of a pan-magic square of even order is zero. An alter- 
native proof, which yields further information concerning the properties of 
such squares, is set out-below. 

A pan-magic square of order 2n is of the form 

a,a2 ...... an A,A2' . An' A .....(i) 
b1b2 ...... bn B1'B2. ...... Bn' A2 

1c12 ......1k K11K2'. ..K. ' n A 

A1A2...... An a'a2' ......a' A 

B1B2 ...... Bn b/'b2'.' b,/ -A2 

K1K2...... K k'k2' ...... k' -A 

dashes denoting complements with respect to S/n, where S is the square 
constant. Thus A/,'= (S/n) - A,. 

We have 

ZA=S- ?ai' 
i=1 i= n 
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We have 
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i=1 i= n 
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