tion (1.3.3) starting with only a finite number of them. In group-theoretical language, the following result is true.

Theorem 1.3 (Mordell's Theorem). The Abelian group $\mathcal{C}(\mathbb{Q})$ is finitely generated.
(cf. ([Mor22], [Cas66], [Mor69], [La83], [Se97] and Appendix by Yu.Manin to [Mum74]). From the structure theorem for finitely generated Abelian groups, it follows that

$$
\mathcal{C}(\mathbb{Q}) \cong \Delta \times \mathbb{Z}^{r}
$$

where Δ is a finite subgroup consisting of all torsion points, and \mathbb{Z}^{r} is a product of r copies of an infinite cyclic group. The number r is called the rank of \mathcal{C} over \mathbb{Q}.

The group Δ can be found effectively. For example, Nagell and Lutz (cf. [Lu37]) proved that torsion points on a curve $y^{2}=x^{3}+a x+b$ for which a and b are integers, have integral coordinates. Furthermore, the y-coordinate of a torsion point either vanishes or divides $D=-4 a^{3}-27 b^{2}$.
B.Mazur proved in 1976 that the torsion subgroup Δ over \mathbb{Q} can only be isomorphic to one of the following fifteen groups:

$$
\begin{equation*}
\mathbb{Z} / m \mathbb{Z}(m \leq 10, m=12), \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 n \mathbb{Z}(n \leq 4) \tag{1.3.7}
\end{equation*}
$$

and all these groups occur, cf. [Maz77].
It is still an open question whether r can be arbitrarily large. Mestre (cf. [Me82]) constructed examples of curves whose ranks are at least 14. *)

A comparatively simple example of a curve of rank ≥ 9 is also given there: $y^{2}+9767 y=x^{3}+3576 x^{2}+425 x-2412$. One can conjecture that rank is unbounded. B. Mazur (cf. [Maz86]) connects this conjecture with Silverman's conjecture (cf. [Silv86]) that for any natural k there exists a cube-free integer which can be expressed as a sum of two cubes in more than k ways.

Examples. 1) Let \mathcal{C} be given by the equation

$$
y^{2}+y=x^{3}-x
$$

whose integer solutions list all cases when a product of two consecutive integers equals a product of three consecutive integers. Here Δ is trivial while the free part of $\mathcal{C}(\mathbb{Q})$ is cyclic, with a generator $P=(0,0)$. Points $m P$ (labeled by m) are shown in Figure 9.

The following Table 1.3, reproduced here from [Maz86] with Mazur's kind permission, shows the absolute values of the X-coordinates of points $m P$, for even m between 8 and 58 .

$$
\begin{aligned}
& \text { * Martin-Mcmillen (2000) found an elliptic curve of rank } \geq 24 \text { : } \\
& \qquad \begin{aligned}
y^{2} & +x y+y=x^{3}-120039822036992245303534619191166796374 x \\
& +504224992484910670010801799168082726759443756222911415116
\end{aligned}
\end{aligned}
$$

(see http://www.math.hr/~duje/tors/rankhist.html for more examples). (footnote by Yu.Tschinkel).

Fig. 1.9.

Table 1.3.

```
20
116
3741
8385
239785
59997896
18490337896
270896443865
16683000076735
2786836257692691
3148929681285740316
342115756927607927420
280251129922563291422645
804287518035141565236193151
743043134297049053529252783151
3239336802390544740129153150480400
2613390252458014344369424012613679600
12518737094671239826683031943583152550351
596929565407758846078157850477988229836340351
2385858586329829631608077553938139264431352010155
56186054018434753527022752382280291882048809582857380
2389750519110914018630990937660635435269956452770356625916
65008789078766455275600750711306493793995920750429546912218291
8633815035886806713921361263456572740784038065917674315913775417535
43276783438948886312588030404441444313405755534366254416432880924019065
5930760454696426589489567617397943244827292346871145123187277732855876671389
```

One sees that the last figures lie approximately on a parabola. This is not an accident, but a reflection of the quadratic nature of heights on elliptic curves (cf. below).
2) Table 1.4 was kindly calculated for this edition by H.Cohen, using PARI computing system, [BBBCO]. This table lists ranks r and generators for curves $X^{3}+Y^{3}=A Z^{3}$ with natural cube-free $A \leq 500$; it corrects and completes the Tables of Selmer (cf. [Selm51], [Selm54]) which were reproduced in the first edition [Ma-Pa]. Note the 3 missing values $A=346,382,445$ for which H.Cohen proved that $r=1$, but the method of Heegner points for computing

