tion (1.3.3) starting with only a finite number of them. In group-theoretical language, the following result is true.

Theorem 1.3 (Mordell's Theorem). The Abelian group $\mathcal{C}(\mathbb{Q})$ is finitely generated.

(cf. ([Mor22], [Cas66], [Mor69], [La83], [Se97] and Appendix by Yu.Manin to [Mum74]). From the structure theorem for finitely generated Abelian groups, it follows that

$$\mathcal{C}(\mathbb{Q}) \cong \Delta \times \mathbb{Z}^r$$

where Δ is a finite subgroup consisting of all torsion points, and \mathbb{Z}^r is a product of r copies of an infinite cyclic group. The number r is called the rank of \mathcal{C} over \mathbb{Q} .

The group Δ can be found effectively. For example, Nagell and Lutz (cf. [Lu37]) proved that torsion points on a curve $y^2 = x^3 + ax + b$ for which a and b are integers, have integral coordinates. Furthermore, the y-coordinate of a torsion point either vanishes or divides $D = -4a^3 - 27b^2$.

B.Mazur proved in 1976 that the torsion subgroup Δ over $\mathbb Q$ can only be isomorphic to one of the following fifteen groups:

$$\mathbb{Z}/m\mathbb{Z} \ (m \le 10, m = 12), \ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z} \ (n \le 4), \tag{1.3.7}$$

and all these groups occur, cf. [Maz77].

It is still an open question whether r can be arbitrarily large. Mestre (cf. [Me82]) constructed examples of curves whose ranks are at least 14. *)

A comparatively simple example of a curve of rank ≥ 9 is also given there: $y^2 + 9767y = x^3 + 3576x^2 + 425x - 2412$. One can conjecture that rank is unbounded. B. Mazur (cf. [Maz86]) connects this conjecture with *Silverman's conjecture* (cf. [Silv86]) that for any natural k there exists a cube-free integer which can be expressed as a sum of two cubes in more than k ways.

Examples. 1) Let \mathcal{C} be given by the equation

$$y^2 + y = x^3 - x$$

whose integer solutions list all cases when a product of two consecutive integers equals a product of three consecutive integers. Here Δ is trivial while the free part of $\mathcal{C}(\mathbb{Q})$ is cyclic, with a generator P=(0,0). Points mP (labeled by m) are shown in Figure 9.

The following Table 1.3, reproduced here from [Maz86] with Mazur's kind permission, shows the absolute values of the X-coordinates of points mP, for even m between 8 and 58.

$$y^2 + xy + y = x^3 - 120039822036992245303534619191166796374x + 504224992484910670010801799168082726759443756222911415116$$

(see http://www.math.hr/~duje/tors/rankhist.html for more examples). (footnote by Yu.Tschinkel).

^{*} Martin–Mcmillen (2000) found an elliptic curve of rank \geq 24:

Fig. 1.9.

Table 1.3.

One sees that the last figures lie approximately on a parabola. This is not an accident, but a reflection of the quadratic nature of heights on elliptic curves (cf. below).

2) Table 1.4 was kindly calculated for this edition by H.Cohen, using PARI computing system, [BBBCO]. This table lists ranks r and generators for curves $X^3 + Y^3 = AZ^3$ with natural cube-free $A \leq 500$; it corrects and completes the Tables of Selmer (cf. [Selm51], [Selm54]) which were reproduced in the first edition [Ma-Pa]. Note the 3 missing values A = 346, 382, 445 for which H.Cohen proved that r = 1, but the method of Heegner points for computing