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Proof (sketch). One can give a direct argument, but it is simpler to derive
these results from the functional equations stated earlier. To check (12.31)
we appeal to a factorization of the Dedekind zeta-function

(12.33) Cxc(s) = ¢(s)L(s, xp)-

Hence, comparing the functional equations (12.20), (12.1) and (12.7), we
deduce (12.31). To check (12.32) we appeal to the factorization

(12.34) L(s,3 o N) = L(s,¢¥)L(s,%¥xD).

Hence, comparing the functional equations (12.25) and (12.7), we deduce
(12.32).

Now we are ready to present the main results. For clarity we state the
imaginary field and the real field cases separately.

Theorem 12.5. Let K = Q(vD) be an imaginary quadratic field with
discriminant D < 0 and £ (mod m) a Hecke character such that

u
(12.35) £((a)) = (ﬁ) ifa=1 (modm)
where u is a non-negative integer. Then

(12.36) f(z) = _&(a)(Na)Ze(zNa) € Mi(To(N), x)

where k = u+ 1, N = |[D|Nm and x (mod N) is the Dirichlet character
given by

(12.37) x(n) = xp(n)é((n)) #¥neZ

Moreover, f is a cusp form if u > 0.

Remark. We assume that u > 0 by conjugating £ if necessary.

Proof (sketch). Note that £ (mnod m) is not required to be primitive; nev-

ertheless we only sketch the arguments for £ primitive. Consider another
function

(12.38) g(z)=C E £(a)(Na)%e(zNa)



214 12. Automorphic Forms Associated with Number Fields

where C = i~ 2*"1W(£)(Nm)~Y/2. By definition of f and g we have Ls(s) =
L(s—%,£) and Lg(s) = CL(s-%,€). To these we attach the factor
(VN /27)°T'(s) to make the complete L-functions

As(s) = (zﬁ,’f)’w (s~ 5-€)>

Ag(s) = (%ﬁ-) T(s)CL (s - ‘5‘5) ,

and verify by (12.26) that As(s) = i*Ag(k — s) (recall that u = k—1). Hence
by the converse Theorein 7.3 it follows that

9= flu> wN=(N _l).

Next let 9 (mod p) be a primitive Dirichlet character of conductor p { N.
Then the twisted L-functions are given by Ly(s,9) = L(s - %,£-%oN)
and Ly(s,9) =CL(s— %,& -9 o N). We set

As(s,¥) = (’lf,—_) T(s)L (s~ 5.6 woN)

Ag(s, %) = (-’12/?) T(s)CL (s - g,z -1/;oN)

and verify by (12.25) that
Ag(s,9) = Fw(@)Ag(k ~ 5,9)

with the appropriate root number

w(®) = x(P)(N)7(¥)*p™"
(to get exactly this number, use (12.37), (12.32), (12.23) and (12.22)). Hence
by the converse Theorem 7.8 we obtain (12.36). If « > 0, then Lf(s)

L (s — %,£) converges absolutely in Re s > § + 1, where ¥ +1 = &2 <k,
so f is a cusp form.

Remark. If £ (mod m) is primitive, then f given by the Fourier series
(12.36) and g = f},, given by the series (12.38) yield L-functions with
adequate Euler products (i.e. of type (6.93)); therefore f is a newform,
namely an eigenfunction of all the Hecke operators T with eigenvalues

t=n"T Y &(a),
Na=n

and f is also an eigenfunction of the operator W = KW with eigenvalue
C = *-1W(€)(Nm)~/2,
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Theorem 12.6. Let K = Q(v/D) be a real quadratic field with discriminant
D > 0 and £ (mod m) a Hecke character such that

(12.39) £((a)) = I%d fa=1 (modm)
or
(12.40) £((a)) = I_Z:—I fa=1 (modm)

where @’ denotes the conjugate over Q. Then

(12.41) f(2) =) _&(a)e(zNa) € Si(To(N), x)

where N = DNwm and the character x (mod N) is defined as in (12.87).

Proof (hint). This follows from the converse Theorem 7.8 by arguments
similar to those used in the proof of Theorem 12.5.

Note that a Hecke character on a real quadratic field always yields a
cusp form of weight k = 1. If £ (mod m) is primitive, then f given by the
Fourier series (12.41) is a newform with Hecke eigenvalues

(12.42) an= Y &a).

Na=n

12.4. Class group L-functions reconsidered

Our arguments used for Theorem 12.5 and Theorem 12.6 were sketchy and
the proofs were not really complete, since we appealed to Hecke's general
results about analytic continuation and functional equations for L-functions
attached to Grossencharacters. Qur purpose was merely to illustrate an
application of the Hecke-Weil converse theorems. Now we take a direct
approach to show that the automorphic forms associated with L-functions
of a quadratic field correspond to theta functions. For simplicity we confine
the demonstration to characters of conductor m = @, so such a character
is primitive. Actually we only consider the class group characters. For an
imaginary field this means « = 0 in (12.35). However if K is real and every
unit of K has norm 1, then neither (12.39) nor (12.40) defines a function
on principal ideals. In this case in order to speak of a class group character
one needs a more subtle definition of ideal classes.
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Let K = Q(vD) be any quadratic field of discriminant D, positive or
negative. Two ideals a,b € I are said to be equivalent in the narrow sense
if

b= (a)a with x € K, Na > 0.
This is a new concept only when K is real and all its units have norm 1.
Here we may replace Na > 0 by the condition a > 0, which means o > 0
and o' > 0 in case of a real field and a # 0 in case of an imaginary field.
We put
P* ={(a):a € K,a> 0}

Then H* = I/P?* is the class group of narrow classes and h* = [I : P*] is
the narrow class number,

{2h if K is real and Ne =1
h  otherwise

h+_

where ¢ is the fundamental unit. By class character we mean a group ho-
momorphism x : H*+ — S!. With x we associate the L-function

(12.43) Li(s,x) =) _ x(a)(Na)~*

where a ranges over non-zero integral ideals. We split this series into narrow
classes, getting

Lic(s,) = Y x(A)Xk(s. A)

AeH*
where {jc(s,.A) is the zeta~-function of the class A,
(12.49) C(s, A) =D (Na)™.
ac A

It turns out that every class zeta-function (k(s,.A) has meromorphic con-
tinuation over the s-plane and satisfies a functional equation of the same
type. Hence the whole function Lx(s, x) inherits these properties.

From now on we give further details only for an imaginary quadratic
field K = Q(vD) of discriminant D < 0. Let w = #U be the number of
units of K. For every class A € H we introduce the theta function

(12.45) Ba(z) =w™ + ) e(zNa),
acA
and for any character x € H we put
(12.46) f(2) = x(A)Ba(2)
AeH
=w'hé(x) + ) _ x(a)e(zNa)
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where 6(x) = 1 if x is trivial and §(x) = 0 otherwise. Every class A contains
an integral primitive ideal (i.e. not divisible by a rational integer > 1). Every
primitive ideal can be written as

5
(12.47) a= [a, l—)i-z\—D] with @ > 0, b —4ac = D, (a,b,c) = 1.

The above notation means a is a free Z-module,

b+VD,

a=aZ
al+ >

Note that ﬁ%@ € O and a = Na; indeed, we obtain

aa:[a b+\/l_)} [ab—\/ﬁ] =[a2 b+vD b-vD

2 2 2 2

= [a?, ab,ad] = ala, b, c] = aO.

With the generators of a we associate the quadratic form
2 2 _1
va(z) = azy + bzy1z2 +cx3 = §A[:c]

2a b
b 2c
the ideal classes A € H and the equivalence classes of primitive binary

quadratic forms ¢4 of discriminant D. We choose v/D = i1/]D] so that

b+ VD
2a

where A = ) This establishes a one-to-one correspondence between

€ H.

Zq =

Then the inverse ideal a~! is a free Z-module generated by 1 and Z,

b—vD

-1 _ 11— 7
a " =[1,Z)=Z+ %

Z.

Now, given a class A which contains a, we can write

Ba(z) =w™' + ) _e(zNb).

bra

Here the equivalence b ~ a means b = (a)a with a € a™!,a # 0, ie.
a =m -+ nZ, with m,n € Z, not both zero. As m,n range over the integers
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every ideal b ~ a is covered exactly w times. Moreover we have Nb =
laf?e = am? + bmn + cn?, whence

(12.48) Ba(z) =w™" Y elpalm,n)z).
(mn)ez?

This is indeed the theta function associated with the matrix A = (2;‘ ,:c).
Note that ~-DA™! = (Ei ;:) Therefore by Theorem 10.9
(12.49) 6.4 € My(To(ID]), xD)

(observe the consistency condition xp(—1) = —1). Furthermore, by the
Jacobi inversion formula (10.10) we get

(12.50) ©.4(z) = |DI"Y?i271© 4-1(—1/|D|z)

where A~! denotes the inverse class to A. Averaging over the ideal classes
A € H, each one weighted by x(.A), we extend the above automorphy rela-
tions to fy. These show that

(12.51) fx € M1(T'o(|D}), xp)
(12.52) fX|(|D| - = —ifx
respectively (note that f, = fz).

Put
(1253) AK(S, X) = (_\/2?1) F(S)LK(S, X))

and observe that the functions f = f, and g = fxl ( _1) = —if, have
ID|

the Fourier series (7.20) and (7.21) with constant terms ap = w™'hé(x)
and by = —iw~hé(x) respectively (to compute the constant terms, use the
asymptotics for s — 1 from the end of Section 7.2). Therefore (A2) of
Theorem 7.3 asserts that the function

(12.54) Ag(s,x) +w  h6(x)(s(1 — 5))™!

is entire and bounded in vertical strips, and Ak (s, x) satisfies the functional
equation

(1255) AK(S: X) = AI((I -, X)
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Actually we have the following integral representation:
Ag(s,x) +w ™ h8(x)(s(1 - 8)) "
o0
= [+ v ) x(@) exp(-2ryNa/ VIDI)dy
a

from which the above assertions follow at once. As a by-product we de-
rive from (12.53), (12.54) and (12.33) the Dirichlet class number formula
(examine the residue at s = 1):

(12.56) h= "-"2—-‘/7[_D_'L(1, XD)-

If K = Q(vVD) is real (D > 0), the above analysis fails since the group of
units is infinite while the quadratic forms corresponding to ideal classes are
indefinite. The latter topics lie beyond the scope of this book, so we don’t
proceed beyond what has been stated about Lg(s,x) in Theorem 12.2 (if x
is trivial) and Theorem 12.3 (if x is non-trivial).

12.5. L-functions for genus characters

Next we shall examine Ly (s, x) closely for special class group characters (for
either imaginary or real quadratic fields), the genus characters. The genus
theory was created by Gauss in the context of binary quadratic forms. Here
we recall its content in terms of ideals.

A discriminant of a quadratic field is said to be a prime discriminant if
it has only one prime factor, so it must be one of the following type:

(12.57) ~4, 48, ¥p=1 (mod 4).

The product of coprime discriminants is again a discriminant. Every dis-
criminant can be written uniquely as a product of prime discriminants, say
D = P, ... P. Hence D can be arranged as a product of two discriminants

(12.58) D= D\Ds

in 2!! distinct ways if we allow interchanging D, with Da (here and here-
after, t denotes the number of distinct prime factors of D). For any such
decomposition we define a character xp, p, on ideals by setting

xp(Np) ifptDy

(12.59) XDy, 02 (p) = { \D(Np) ifpiD:
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(recall that x4(n) = (£) is the Kronecker symbol). This is well defined on
prime ideals because

(12.60) xp(Na) =1 if(a,D)=1,
and we extend xp,,p, to all fractional ideals by multiplicativity. Therefore
xDl)DZ : I = {:bl}

S0 XD,,D, has order two, except for the trivial character which corresponds
to the trivial factorizations D = D -1 =1 D. Every such xp, p, is called
the genus charactler of discriminant D; these are different for distinct fac-
torizations (12.58), so we have exactly 2!~! genus characters.

The genus characters are the narrow class group characters, xp, p, €
HY, ie.

(12.61) xD,,0,(8) =1 ifa=(a),a>0.

Theorem 12.7 (Kronecker). The L-function of K = Q(v/D) associated
with the genus character xp,,p, factors into the Dirichlet L-functions,

(1262) Lk (3, XDy ,Dz) = L(S, XDy )L(st XDz)-

Proof (hint). For the trivial character (D = 1 or D, = 1) this is the
factorization (12.33) for the Dedekind zeta-function. In general one can ver-
ify the Kronecker factorization (12.62) easily by examining the local factors
in the corresponding Euler products and using the law of factorization of
primes in K expressed in terms of values xp(p) = 0, £1.

One shows that every real character of H* is a genus character, and
they all form a group of order 2!~! which is isomorphic to (Z/2Z)!".

Now let us describe the dual side of genus characters. We say that two
non-zero ideals a,b € I are in the same genus if

(12.63) x(a) = x(b) for all genus characters.

The ideals with x(a) = 1 for all genus characters form the principal genus
(a subgroup of I). The same definitions apply to the narrow classes. We
denote the subgroup of principal genus classes by

(12.64) G ={A€H: x(A) =1 for all genus characters}.

The factor group F = H*/G is called the genus group. By duality F is
isomorphic to (Z/2Z)*-.



