
A Topology-Preserving Level Set Method for

Shape Optimization

Oleg Alexandrov and Fadil Santosa
University of Minnesota

School of Mathematics

{aoleg, santosa}@math.umn.edu

September 14, 2004

Abstract

The classical level set method, which represents the boundary of the unknown

geometry as the zero-level set of a function, has been shown to be very effective in

solving shape optimization problems. The present work addresses the issue of using a

level set representation when there are simple geometrical and topological constraints.

We propose a logarithmic barrier penalty which acts to enforce the constraints, leading

to an approximate solution to shape design problems.

Keywords: Level set method, optimization, topology preservation, steepest descent method.

1 Introduction

The level set method [7, 9, 5], is a very powerful approach for problems involving geometry
and geometric evolution. It has also been applied to solving shape optimization problems
[1, 10, 6], and it is at this type of problems that this work is aimed. By a shape we mean a
bounded region D in R

n with C1 boundary. The level set method amounts to considering a
function φ such that

D = {x : φ(x) > 0},

and manipulating D implicitly, through its level set function φ.
It is typical in shape optimization problems to start with an initial shape, which is then

improved in an iterative process. Thus, one would start with a level set function φ(x) which
is updated at each iteration.

The advantage of the level set method is that it is much easier to work with a globally
defined function than to keep track of the boundary of a domain. The latter, which can be
achieved by using marker points and spline interpolation, can become especially complicated
if D has either several connected components, or is otherwise connected but has several
holes. During the optimization process, the components or holes may merge or split, or

1

PSfrag replacements

z = 0

D

z = φ(x)

Figure 1: The domain D and its level set function φ.

even entirely disappear. The level set method, on the other hand, takes care of this kind of
changes with great ease.

Given the shape D there exist of course many functions φ such that D = {x : φ(x) > 0}.
The most convenient φ to work with is the signed distance to ∂D, thus

φ(x) =

{
dist(x, ∂D), x ∈ D,

−dist(x, ∂D), x 6∈ D.
(1)

Then φ will have the additional property

∇φ(x) · ∇φ(x) = 1 (2)

for x in a neighborhood of ∂D. Any level set function φ can be reinitialized as the signed
distance to the set {x : φ(x) = 0}, so from here on we will assume that φ always satisfies
(1), by reinitializing it if necessary.

It is very easy to describe deformations of D in terms of its level set function φ. For
example, if h : R

n → R is a function with sup |h(x)| small enough, then the set {x :
(φ + h)(x) > 0} is obtained from the set D = {x : φ(x) > 0} by shifting every point x ∈ ∂D
by approximately the amount h(x) in the direction of the external normal to ∂D at x (which
is −∇φ(x)).

While the level set method has its strong points – one being that it gives a representation
that is topology-independent – it is not obvious how to extend it to problems where there
are constraints. Simple volume (area in 2-D) constraints are relatively easy to incorporate
[6]. Other constraints, such as a bound on the size of a connected component of D, or the
requirement that D has a fixed number of connected components, are not as easy to handle.
It is towards this class of problems that this work is directed.

Our approach starts with the concept of subdomain neighborhood. The neighborhood
of one subdomain will detect the nearness of other subdomains, and will thus allow us to
take action to prevent geometrical or topological changes. This strategy can be formulated

2

as a penalty functional, which we describe in Section 2. In Section 3 we deduce a descent
direction which will enable us to find a minimizer for the obtained penalized optimization
problem. We discuss numerical issues in implementing our method in Section 4. Lastly, in
Section 5 we illustrate our method by several numerical examples.

We wish to mention the paper [3] which also suggests a way of adapting the level set
method to preserve topology. The authors of this paper do it in the context of image
segmentation. The key difference between our work and [3] is that their method is pixel-
based. The algorithm in [3] is able to detect that a shape is about to change topology only
when certain dimensions of the shape are of size comparable to the grid size. In the context
of image processing this makes a lot of sense, as then it is convenient to define a body to
be connected as long as it is made up of one or more pieces joined together by at least one
pixel.

We developed our topology preserving level set method having in view problems of shape
design. In contrast to the pixel-based method mentioned above, we start with a continuous
problem whereby we can specify certain conditions about how small, thin, or close certain
features of the shape can get. The problem is then discretized using a grid as fine as needed
to resolve the details of the optimal shape.

2 The penalty functional

A typical shape optimization problem is as follows. We are given a cost function F which
depends on the geometry of the unknown shape. The problem is to find a shape such that
the cost function is minimized (at least locally).

Let us represent the shape D as

D = {x : φ(x) > 0}.

The optimization problem we wish to solve is

min
φ

F (φ),

subject to geometrical and topological constraints on D. The latter constraints are:

• Shape topology. The domain we design for must have, for example, a fixed number
of connected components and holes.

• Component size. A lower bound on the size of each component and hole is prescribed.

• Distance between components. A lower bound on the distance between compo-
nents (and holes) is prescribed. In the case of holes, we also prescribe a lower bound
on the distance from each of the holes to the external boundary of the domain.

These constraints arise naturally in optimal design problems as we will illustrate in the
numerical examples.

3

PSfrag replacements

C1 C2

C3

C4

C5

D

Figure 2: The set Id (dashed curves) and El (dotted curves).

It turns out that all these constraints can be handled in a single penalty formulation. We
will restrict our attention to 2-D problems, even though the same ideas will work in higher
dimensions.

Assume for simplicity that D is a bounded and connected set in R
2 with a set of holes

inside of it, which are connected components of R
2\D. If d > 0 and l > 0 are real numbers,

denote
Id = {x + d∇φ(x) : x ∈ ∂D},

and
El = {x − l∇φ(x) : x ∈ ∂D}.

It follows from (2) that for d and l small enough, Id and El are made up of points at distance
d and l respectively from ∂D. (In fact, for d = l, the union of these two sets is exactly the
set of all points at distance d from ∂D.) This implies that any two components of R

2\D
(we consider the unbounded component too) are at distance more than d from each other if
and only if Id is entirely inside of D, that is, φ(x) > 0 on Id. Also, the gaps in D are neither
“smaller” nor “thiner” than l if and only if El is a subset of R

2\D, that is, φ(x) < 0 on El.
In view of the definitions of Id and El, these translate into the conditions

φ
(
x + d∇φ(x)

)
> 0 and φ

(
x − l∇φ(x)

)
< 0 for x ∈ ∂D.

To incorporate these conditions into the optimization problem we use the logarithmic

barrier method [4]. Instead of trying to minimize F (φ), consider the problem of minimizing
Fε(φ) = F (φ) + εH(φ) for ε ¿ 1, where

H(φ) = −

∫

∂D

log
[
φ
(
x + d∇φ(x)

)]
ds −

∫

∂D

log
[
− φ

(
x − l∇φ(x)

)]
ds.

4

Thus, by trying to achieve a minimal value for Fε(φ), we keep the value of H(φ) not too large,
and in particular, this functional is defined, which implies that the topological constraints
are preserved.

3 The descent direction

To obtain φ minimizing Fε(φ) we will use the steepest descent method. It amounts to calcu-
lating the Fréchet derivative of Fε(φ), and at each iteration taking a step in the direction in
which Fε(φ) decreases fastest.

In order to calculate the derivative of Fε(φ) we need the derivatives of F (φ) and H(φ).
Let h : R

2 → R be a test function. Denote

DφF (φ) · h =
dF (φ + t h)

dt

∣∣∣∣
t=0

.

Let us note that, as t → 0, F (φ+t h) will depend on the values of h only on an ever shrinking
neighborhood of ∂D, as F is a function only of the set {x : (φ + t h)(x) > 0}, and the way
this set depends on h was discussed in the introduction. Then, intuitively we would expect
that DφF (φ) · h will be a function only of h|∂D and φ. This is indeed true. According to a
result called the “Hadamard-Zolésio structure theorem” [2], if F , D, and h are sufficiently
regular, then

DφF (φ) · h =

∫

∂D

U(x)h(x) ds, (3)

for some function U which depends on φ.
The derivative of H(φ) can be calculated explicitly. Consider a parameterization x(s)

of ∂D, with x′(s) having unit length for all s. H(φ + th) will be a sum of two integrals
over the set {x : (φ + t h)(x) = 0}, which, if (2) holds, is approximately parameterized by
x − t h(x)∇φ

(
x), with x = x(s). One can then find that the derivative of the first integral

in H(φ + th) at t = 0 is

∫

∂D

{[
∇φ(x)h(x) + dh(x)∇2φ(x)∇φ(x) − d∇h(x)

]
· ∇φ

(
x + d∇φ(x)

)
− h

(
x + d∇φ(x)

)

φ
(
x + d∇φ(x)

)

+ log
[
φ
(
x + d∇φ(x)

)]
x′ ·

[
(∇h(x) · x′)∇φ(x) +

(
∇2φ(x)x′

)
h(x)

]}
ds. (4)

A similar equality holds for the second term in H(φ).
Beside the obvious complexity of this expression, note that unlike the case of F (φ), this

derivative will no longer depend on the values of the test function h only on ∂D. We will
make several approximations. Recall that the purpose of H(φ) is to make sure at every step
in the optimization process the domain D has the topology preserved. H(φ) will grow large
only when D is close to violating the restrictions imposed on it. As far as the first integral
in H(φ) is concerned, this happens when φ

(
x + d∇φ(x)

)
becomes close to zero. Then, the

5

PSfrag replacements

x
x′

P3

C1

C2

φ < 0 φ > 0 φ < 0

Figure 3: The case when dist(x1, x2) = dist(∂C1, ∂C2) = d.

term on the first line of (4) is much larger than the second. For this reason, we will ignore
the term on the second line. Also, on the first line, we have ∇2φ(x)∇φ(x) = 0, which follows
from (2). Since d is supposed to be a small number, we will replace h

(
x + d∇φ(x)

)
with its

first order Taylor expansion h(x) + d∇h(x) · ∇φ(x). Then, the numerator of the expression
on the first line of (4) becomes

h(x)
{
∇φ(x) · ∇φ

(
x + d∇φ(x)

)
− 1
}
− d∇h(x) ·

[
∇φ
(
x + d∇φ(x)

)
+ ∇φ(x)

]
. (5)

To further simplify this expression, we will need a lemma.

Lemma 3.1 Assume that two connected components C1 and C2 of R
2\D are at distance

slightly larger than d. Then, for points x ∈ ∂C1 closest to ∂C2 one has

∇φ(x) ≈ −∇φ
(
x + d∇φ(x)

)
.

Proof. Let us see what happens when ∂C1 and ∂C2 are at distance exactly d from one
another, and x ∈ ∂C1, x′ ∈ ∂C2 are such that dist(x, x′) = dist(∂C1, ∂C2). Consider this
situation in Figure 3. Then, the segment going from x to x′ will be perpendicular to the
curves ∂C1 and ∂C2 at these points. Since ∇φ(x) is also perpendicular to ∂C1 and points
outward C1, and since |∇φ(x)| = 1, it follows that x′ − x = d∇φ(x). In the same manner
one obtains x − x′ = d∇φ(x′). Thus we have x′ = x + d∇φ(x) and

∇φ(x) =
x′ − x

d
= −

x − x′

d
= −∇φ(x′) = −∇φ

(
x + d∇φ(x)

)
.

Clearly, if the distance between ∂C1 and ∂C2 is slightly larger than d, this equality will hold
only approximately. ¥

6

With the help of this lemma, and if we recall that we care about the expression (4)
only when two components of R

2\D are getting at distance slightly larger than d from one
another, we can then drop the second term in (5), and simplify (4) to

∫

∂D

U1(x)h(x) ds,

with

U1(x) =
∇φ(x) · ∇φ

(
x + d∇φ(x)

)
− 1

φ
(
x + d∇φ(x)

) , x ∈ ∂D. (6)

The derivative of the second integral in H can be calculated, and then approximated, in
the same way. Make the notation

U2(x) =
∇φ(x) · ∇φ

(
x − l∇φ(x)

)
− 1

φ
(
x − l∇φ(x)

) , x ∈ ∂D. (7)

We obtain

DφH(φ) · h =

∫

∂D

[
U1(x) + U2(x)

]
h(x) ds,

which gives us the following approximate equality

DφFε(φ) · h =

∫

∂D

[
U(x) + εU1(x) + εU2(x)

]
h(x) ds.

At each step in the optimization process, we will take a step in the direction

u(x) = −[U(x) + εU1(x) + εU2(x)
]
, (8)

where x ∈ ∂D. This quantity can be extended continuously to a neighborhood of ∂D in
the following manner: for x ∈ R

2 close to ∂D let x̃ ∈ ∂D be the unique point such that
dist(x, ∂D) = dist(x, x̃), and set

u(x) = φ(x) + u(x̃). (9)

Thus, the next iteration for φ would be φ + αu, where α > 0 is the length of the step to be
taken in the direction u.

Since the formula for DφFε(φ) ·h we found is not exact, u will not be the steepest descent
direction, actually it might not be a descent direction at all. Nevertheless, we will argue
below that this iterative process does its job at maintaining the topology constraints. And
as far as the problem of minimizing F (φ) is concerned, it is clear that the iterative process
we suggest will give us a sufficiently good approximation to the point of minimization φ,
provided that ε is small enough.

We will show that, if the level set function φ is such that two components of {x : φ(x) < 0}
are at distance slightly more than d from one another, then u will act as a repelling force,
and in consequence, the components of {x : (φ + αu)(x) < 0} will be further apart.

7

Indeed, let C1 and C2 be two such components, and let x ∈ ∂C1 be a point at distance
slightly larger than d from C2. Then, from Lemma 3.1 and Equations (2) and (6), one
obtains

U1(x) =
∇φ(x) · ∇φ

(
x + d∇φ(x)

)
− 1

φ
(
x + d∇φ(x)

) ≈ −
2

φ
(
x + d∇φ(x)

) ,

which is large in magnitude and negative. Moreover, when the distance between x and C2

gets quite close to d, εU1(x) will be larger in magnitude than U(x)+εU2(x). In consequence,
u(x) defined by (8) will be positive. Therefore, we have φ(x) = 0, but (φ + αu)(x) > 0.
The same reasoning applies for points x ∈ ∂C2 close to ∂C1. This shows that the connected
components of (φ + αu)(x) < 0 will be further apart.

It can be argued in the same manner that should a component of {x : φ(x) < 0} get too
“thin” or too “small”, then U2(x) will serve as a counterweight, forcing it to get “fatter”.

4 Numerical implementation

The idea of the algorithm is then to perform an iterative process, at each step replacing φ
by φ + αu, with α > 0 being the step size. Let us note that in order for this to work, each
step size should not be too big. Indeed, αu determines by how much the boundary of D
gets shifted at a given step, and if the boundary of D moves by more than d

2
at a time, then

two components of {x : φ(x) < 0} which were at distance slightly more than d can end up
merging without the penalty functional noticing that. Or, if the boundary moves by more
than l

2
, a connected component slightly thinner or larger than l might end up splitting or

disappearing. Therefore, at each step one needs to make sure that the step size α is such
that

α max
x∈∂D

|u(x)| < K min(d, l) (10)

with K > 0. Theoretically K can be allowed to be as large as 1

2
, but since we use a finite

grid size we have to be more conservative. A value of K = 1

4
works in practice.

But even enforcing (10) is not enough to guarantee our geometrical and topological
constraints. The penalty functional H(φ) is supposed to take care of this, but it is clear
that the smaller ε is, the weaker the influence of H(φ) in Fε(φ) will be, and the closer to
violating the constraints φ will get, before this penalty functional kicks in. Thus, at each
iteration one needs to first take a step size α satisfying (10), and still check after updating φ
to φ+αu whether H(φ) is defined. If not, one needs to decrease the step size α, for example
by halving it, until H(φ) is defined. If no amount of decreasing α helps, one needs to either
increase ε or decrease the grid size, and restart the algorithm.

A pseudo-code for the algorithm is shown in Figure 4.
We note that if at some point the contour {x : φ(x) = 0} develops sharp angles, then the

functional H(φ) might not be defined (this can be seen from Figure 2). To prevent this from
happening, one can smooth φ a bit at each iteration. For φ discretized on a square grid we
used the procedure

φi,j →
φi,j + φi−1,j + φi+1,j + φi,j−1 + φi,j+1

5
.

8

initial guess for φ
do while not optimal

• compute the descent direction u (use (6), (7), (8), and (9))
• choose a step size α satisfying (10) for which H(φ + αu) is

defined

• update φ to φ + αu
• reinitialize φ to satisfy (1)

Figure 4: The pseudo-code for the algorithm.

Also, for fine grids it becomes expensive to reinitialize φ according to (1). To make this
computation faster we reinitialized φ only in a neighborhood of the set {x : φ(x) = 0}. For
more performance one could use the fast re-distancing algorithms suggested in [8, 11, 12].

Lastly, sometimes one might wish to introduce additional constraints of the form G(φ) =
const. in the optimization problem. An example of such a constraint is the requirement that
the area of the set {x : φ(x) > 0} be kept fixed, which we will use in the two numerical
examples below. Then one needs to modify the descent direction u as described in [6].

5 Numerical examples

In the first example, we consider the problem of finding a domain that has the smallest
perimeter, subject to the constraint that the area of the domain be fixed. Thus, the functional
to minimize is

F (φ) =

∫

{φ=0}

1 ds,

with the constraint

G(φ) =

∫

{φ>0}

1 dx = const.

The starting shape is a region with seven subdomains, each one an ellipse with aspect ratio
1.3, as shown in Figure 5 on the left. The center ellipse has a slightly bigger (20%) size than
the rest. The distance between the centers of the ellipses is 4, and the smallest semi-axis of
the surrounding ellipses is 1.

If we do not constrain the topology or geometry, the optimal solution would be a disk
whose area is equal to the area of the original seven subdomains. If we do enforce these
constraints, minimizing instead the functional

F (φ) + εH(φ),

we obtain the picture in Figure 5 on the right.

9

Figure 5: The initial and optimized shape for numerical example 1.

For this calculation we set d = l = 0.8, ε = 0.25 and considered a square grid of size
h = 0.05 (each square is further split into two triangles, to make it easier to keep track of
the set {x : φ(x) = 0}).

We find that the “satellite” components of the central domain do not disappear, but
became of size slightly larger than l.

We note that that the resulting large domain in the center is not perfectly circular. This
because the steepest descent direction for F (φ) will be ∆φ = ∂2φ/∂x2

1+∂2φ/∂x2
2. We need to

calculate this quantity numerically, and after reinitializing φ according to (1) it is not smooth
enough for ∆φ to be calculated accurately. Smoothing φ as noted in the previous section
helped a bit, this is how this picture was obtained. We found that if we perform additional
smoothing then the result in Figure 3 will look more circular. This artifact does not show
up in the next example, as then one does not need to calculate second-order derivatives of
φ.

In the second example we examine the problem of minimizing the functional

F (φ) =

∫

{φ>0}

(x2

1 + x2

2) dx1 dx2.

This functional, which is the second moment of area, measures how concentrated around
the origin the set {x : φ(x) > 0} is. We again enforce the area constraint G(φ) = const.,
and we use the same initial shape and the same values for d, l and h. We set ε = 0.5. In
absence of topological constraints, these seven ellipses would merge to form a large circle.
The topological constraints prevent them from doing so, as we see from Figure 6.

For Example 2, we performed several experiments varying ε. For ε = 1, we found the
optimal shape pictured in Figure 7. The shape obtained for ε = 0.5 (pictured in Figure 6)
was essentially the same as the one found for ε = 0.25, except that in the latter case the

10

Figure 6: The initial and optimized shape for numerical example 2.

“satellite” components were slightly smaller, which is to be expected, as for smaller ε the
influence of the penalty functional is weaker. The algorithm failed to converge for ε = 0.125.
We also found that, as expected, the smaller ε is, the smaller the value of the functional F
is for the resulting shape.

We also ran several experiments varying d and l, with ε = 0.5 fixed. For d = l = 0.6 we
found essentially the same optimal solution as for d = l = 0.8 (pictured in Figure 6) except
that the “satellite” components were slightly smaller. The algorithm failed to converge for
d = l = 1. We then halved the grid size, to h = 0.025. We obtained the result shown in
Figure 8. We see that the “satellite” components are quite a bit larger than in Figure 6.

6 Discussion

In this paper we introduced a penalty functional which makes it possible to use the level
set method in problems with topology and geometry constraints. Our method allows for
topological constraints independent of the grid size (that is, for given d and l, the grid size
h can be chosen as small as desired), which is a key difference with the method suggested in
[3].

Acknowledgments

We wish to thank Grant Erdmann, whose suggestion that a logarithmic barrier method
could be used to preserve constraints lead to the penalty functional we employ in this pa-
per. We are grateful to the anonymous referees who made very helpful suggestions to the
orginal manuscript, many of which we have incorporated in the present version. This work
is supported in part by the National Science Foundation.

11

Figure 7: Running Example 2 for ε = 1.

Figure 8: Running Example 2 for d = l = 1 and h = 0.025.

References

[1] Grégoire Allaire, François Jouve, and Anca-Maria Toader. A level-set method for shape
optimization. C. R. Math. Acad. Sci. Paris, 334(12):1125–1130, 2002.

[2] M. C. Delfour and J.-P. Zolésio. Shapes and geometries. Advances in Design and Control.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.

[3] Xiao Han, Chenyang Xu, and Jerry L. Prince. A topology preserving level set method
for geometric deformable models. IEEE Transactions on PAMI, 25(6):755–768, 2003.

12

[4] Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer Series in
Operations Research. Springer-Verlag, New York, 1999.

[5] Stanley J. Osher and Ronald Fedkiw. Level set methods and dynamic implicit surfaces,
volume 153 of Applied Mathematical Sciences. Springer-Verlag, New York, 2003.

[6] Stanley J. Osher and Fadil Santosa. Level set methods for optimization problems in-
volving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum.
J. Comput. Phys., 171(1):272–288, 2001.

[7] Stanley J. Osher and James A. Sethian. Fronts propagating with curvature-dependent
speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1):12–
49, 1988.

[8] Giovanni Russo and Peter Smereka. A remark on computing distance functions. J.

Comput. Phys., 163(1):51–67, 2000.

[9] James A. Sethian. Level set methods and fast marching methods, volume 3 of Cambridge

Monographs on Applied and Computational Mathematics. Cambridge University Press,
Cambridge, second edition, 1999.

[10] James A. Sethian and Andreas Wiegmann. Structural boundary design via level set
and immersed interface methods. J. Comput. Phys., 163(2):489–528, 2000.

[11] John Strain. Fast tree-based redistancing for level set computations. J. Comput. Phys.,
152(2):664–686, 1999.

[12] Mark Sussman and Emad Fatemi. An efficient, interface-preserving level set redistancing
algorithm and its application to interfacial incompressible fluid flow. SIAM J. Sci.

Comput., 20(4):1165–1191 (electronic), 1999.

13

