question groupe $\mu_5$ — Les-mathematiques.net The most powerful custom community solution in the world

question groupe $\mu_5$

Modifié (November 2021) dans Algèbre
Hello,

Je n'ai jamais d'idée pour le titre, pas bien grave !

Soit $R$ un anneau (commutatif), je note $\mu_5(R) := \{ x \in R \mid x^5 = 1 \}$,
J'ai une application $\phi : \mu_5(R) \to \mu_5(R[ i])$, qui à $x \in \mu_5(R)$, associe $x$ vu sans $R[ i]$, c'est une inclusion !

Est-ce que quelqu'un a un argument (simple) qui prouve que c'est une bijection ?

il faut probablement supposer $2$ inversible dans l'anneau !

Réponses

  • Si $R=\R$, alors $R[~i]=\C$.
    $\mu_5(\R)=\{1\}$, mais $\mu_5(\C)$ a $5$ éléments.
    Je ne dois pas avoir compris.
  • Non, non, Marco, tu as raison, je suis con ! C'est pas bijectif effectivement, tête vraiment dans le guidon !
Connectez-vous ou Inscrivez-vous pour répondre.
Success message!