Mystère des nombres premiers? — Les-mathematiques.net The most powerful custom community solution in the world

Mystère des nombres premiers?

Bonjour

Finalement pourquoi dit-on que la répartition des nombres premiers pose question?
Il suffit d'ajouter 1 au produit des nombres premiers précédents pour avoir le suivant d'après Euclide d'après tout non?

Merci

Réponses

  • Bonjour

    Je fais comme tu dis: $2\times 3 +1=7$. N'ai-je pas raté un premier?
  • ah mince c'est vrai
    Mais la méthode d'Euclide fait déjà un bon boulot..
  • Rambert a écrit:
    Il suffit d'ajouter 1 au produit des nombres premiers précédents pour avoir le suivant d'après Euclide

    Tu as mal lu Euclide:

    $1+2\times 3\times 5\times 7\times 11 \times 13=59\times 509$
  • bonjour Rambert

    parler de mystère des nombres premiers relève du bon sens :

    Euler lui-même était persuadé qu'on ne trouverait jamais de règle
    qui permette de comprendre la répartition des entiers premiers

    mais fin 18ème siècle Gauss et Legendre avaient conjecturé la clef de cette répartition avec la fonction logarithme intégral
    à la base du théorème des nombres premiers démontré un siècle plus tard,
    simultanément par le Français Hadamard et le Belge La Vallée Poussin

    la répartition des entiers impairs est simple et algébrique,
    celle des entiers premiers est en fait probabiliste et liée à leurs propriétés asymptotiques
    et ils apparaissent (avec coquetterie !) dans la liste des entiers naturels d'une façon imprévisible et inattendue

    cordialement
Connectez-vous ou Inscrivez-vous pour répondre.
Success message!