Convergence d'une série — Les-mathematiques.net The most powerful custom community solution in the world

Convergence d'une série

Bonjour
Soit la série de terme général $u_{n}=\exp\Big(\dfrac{(-1)^n}{n}\Big)-1$
$u_{n}$ est équivalent à $\dfrac{(-1)^n}{n}$ donc n'est pas de signe constant.
$\vert u_{n}\vert$ est équivalent à $\dfrac{1}{n}$ donc la série ne converge pas absolument.
J'ai essayé le TSSA avec $(-1)^n\vert\exp\Big(\dfrac{(-1)^n}{n}\Big)-1\vert$ mais le terme en valeur absolue n'est pas décroissant.

Du coup je bloque, auriez-vous une idée ?

Réponses

  • Développement limité.
  • A l'ordre 2 j'ai $u_{n}=\dfrac{(-1)^n}{n}+\dfrac{1}{2n^2}+o(\dfrac{1}{n^2})$

    Mais je ne vois pas ce que cela m'apporte de plus ?
  • C’est une égalité désormais (et non un équivalent qui nécessite en général de ne pas changer de signe pour pouvoir travailler).
    1) Tu sais que la série du premier terme converge.
    2) Tu sais que la série du second terme converge.
    3) Tu sais que la série du petit $o$ converge (à démontrer, c’est tout bête si tu as le « 2) »).

    On regroupe parfois 2) et 3) dans la même série.
  • le $o\Big(\dfrac{1}{n^2}\Big)$ est absolument convergent donc convergent. je n'avais pas pensé à ça...

    Merci Dom et Chaurien...
  • De rien, à ton service ;-)

    C’est super pratique les DL pour ça.
    Je pense à l’exemple classique où les équivalent ne permettent pas de conclure car le terme général change de signe.
    À savoir :
    $$
    \dfrac{(-1)^n}{\sqrt{n}} \qquad\text{ et }\qquad \ln \Big(1+\dfrac{(-1)^n}{\sqrt{n}} \Big)$$
  • L'équivalent "suffit" puisque le reste d'ordre 1 est un $O(1/n^{2})$.
    Remarque au passage pour grappiller sur les DL.
  • @Dom :

    Il n'est pas nécessaire de séparer en trois termes.

    Le premier terme est le terme général d'une série convergente et la somme des deux derniers termes est équivalente à $\frac{1}{2n^2}$ qui est positif et terme général d'une série convergente.

    Edit: je viens de voir que tu l'as écrit à la fin de ton message.
  • Riemann_lapins_cretins :
    Je n’avais pas compris ton message tout de suite.
    Tu parles bien du DL du fil et non de ma remarque je pense.
    Cela dit, pour le savoir, c’est grâce à un DL, non ? (même s’il existe peut-être une autre méthode)

    troisqua,
    Tu fais bien de le souligner quand même, d’ailleurs c’était l’objet de mon édit’ .
    Je persiste à croire que pédagogiquement c’est plus parlant. Mais ce n’est pas un argument, c’est très partial.
  • Oui je parlais bien à l'auteur du fil. C'est bien par le dl qu'on obtient le résultat mais y penser permet d'exploiter l'équivalent qu'on voit à l'œil nu pour s'éviter des calculs.
Connectez-vous ou Inscrivez-vous pour répondre.
Success message!