Nom du théorème ? — Les-mathematiques.net The most powerful custom community solution in the world

Nom du théorème ?

Salut à tous,
Soit $x\in \mathbb R$ tel que $x\neq 1$ et $0<x<2$. Quel est le théorème qui assure l’existence d'un $\varepsilon>0$ tel que $1\notin\, ]x-\varepsilon,x+\varepsilon[$ et $0<x-\varepsilon<x+\varepsilon<2$ ?
Merci d'avance.

Réponses

  • Aucun. C'est juste le fait que $]0,2[\,\setminus \{1\}$ est un ouvert.
  • On peut s'en sortir avec des outils plus basiques, typiquement pour montrer ça en L1.

    On prend $\epsilon$ sous la forme $\dfrac{1}{n}$ et après ça découle du fait que $\R$ est archimédien.
  • Zakariyae écrivait: http://www.les-mathematiques.net/phorum/read.php?4,2313568,2313568#msg-2313568

    Si c'est le coeur de la question, réponds-y en faisant une disjonction de cas par exemple.
    Par exemple, pour certains cas, $\frac{|x-1|}{2}$ convient...
    Si tu dois juste utiliser ce résultat au milieu d'un raisonnement, considère-le comme évident pour le lecteur (éventuellement, fais un petit dessin à côté).
Connectez-vous ou Inscrivez-vous pour répondre.
Success message!