Eléments propres d'un endomorphisme dans C_n[X]

jp nl
Modifié (May 2023) dans Algèbre
Bonjour.
$n$ est un entier non nul et $a$ et $b$ sont deux complexes distincts
(énoncé original : réels ; mais il me semble que ça ne change rien).
On considère l'endomorphisme de $\C_n[X]$ défini par $u(P)=(X-a)(X-b)P'-nXP$
(on demandait de montrer que c'est bien un endomorphisme).
On demande s'il est diagonalisable et ses espaces propres.
Je les ai, mais j'ai salement travaillé ; j'aimerais connaître une méthode "propre".
D'abord, j'ai montré qu'un vecteur propre avait nécessairement pour degré $n$
(supposons que $P$ soit propre et de degré $k$, en regardant le coefficient dominant, on obtient $k=n$).
Ensuite j'ai remarqué que (en notant $P$ un vecteur propre et $\lambda$ la valeur propre associée) :
($P$ admettait $a$ et $b$ pour racines) ou ($\lambda=-na$) ou ($\lambda=-nb$).
J'ai traité les deux derniers cas en résolvant une équation différentielle : le sous-espace propre associé à $-na$ est engendré par $(X-b)^n$, idem pour l'autre.
J'ai décidé de regarder (en tentant ma chance) si $(X-a)^k(X-b)^{n-k}$ était vecteur propre, et ça marche avec les valeurs propres $-kb-(n-k)a$ !
Ouf, j'ai $n+1$ valeurs propres distinctes, terminé !
Mais quel sale boulot.
Quelqu'un peut-il m'indiquer une méthode plus élégante ?
(parce que j'ai eu de la chance que les polynômes ne soient pas de la forme $(X-a)(X-b)Q$ avec $Q$ à déterminer.

Réponses

  • Tu peux chercher à résoudre l'équation aux éléments propres en faisant intervenir la fraction rationnelle $\dfrac{P'}{P}$.
  • jp nl
    Modifié (May 2023)
    Merci, ici aussi JLapin !
    Je dois avoir une erreur de signe, mais il est tard.
    Mais je trouve bien les polynômes $(X-a)^k(X-b)^{n-k}$ et seulement ceux-là (pas d'autre racine pour $P$) et $\lambda=a(n-k)+kb$.
    Super ! Merci encore.
  • gerard0
    Modifié (May 2023)
    Bonjour Jp nl.
    J'ai un gros doute ... ta définition $u(P)=(X-a)(X-b)P'-nXP$ implique que $\deg(U(P))=\deg(P)+1$; gênant pour rester dans $C_n[X]$.
    Cordialement.
  • Math Coss
    Modifié (May 2023)
    Non, pas de problème car si $P$ est de degré $n$ (le seul cas gênant), le monôme de degré $n+1$ vient avec un coefficient $n$ dans le terme $X^2P'$ et $-n$ dans $-nXP$.
  • Ah oui, je n'avais pas tout regardé ! Désolé.
  • jp nl
    Modifié (May 2023)
    Episode 2.
    Analyse.
    Soit $P$ un vecteur propre et $\lambda$ la valeur propre associée.
    $(X-a)(X-b)P'-nXP=\lambda P$, donc $P'/P=(nX+\lambda)/(X-a)/(X-b)$.
    On décompose en éléments simples à droite : $$\frac{P'}{P}=\frac{\alpha}{X-a}+\frac{\beta}{X-b},$$
    avec $\alpha+\beta=n$ et $\alpha b+\beta a=\lambda$.
    En intégrant "formellement", on obtient $P=(X-a)^{\alpha}(X-b)^{\beta}$, à une constante multiplicative près.
    $\alpha+\beta=n$, et $P$ est un polynôme donc $\alpha, \beta\in\N$.
    Bilan des courses : tout polynôme propre est de la forme $(X-a)^k(X-b)^{n-k}$, à une constante multiplicative près.
    Synthèse.
    Notons $P_k=(X-a)^k(X-b)^{n-k}$ avec $k\in[\![0,n]\!]$.
    Après calcul, $u(P_k)=-(kb+(n-k)a)P_k$.
    On a $n+1$ vecteurs propres associés à des valeurs propres distinctes, donc $u$ est diagonalisable.
    (et au passage, les $P_k$ forment une base de $\C_n[X]$).
    Propre ?
    Encore deux questions éventuelles :
    1) intégration formelle, ça passe en MP ? ou comment le faire passer ?
    2) par rapport au point 1), si $a$ et $b$ sont complexes, quid de l'intégration formelle ?
    Ceci dit la synthèse doit mettre de l'huile dans tout ça, elle suffit et est convaincante.
    Encore merci.
  • Remplace l'intégration formelle par l'unicité de la décomposition en éléments simples (dans $\C(X)$).
  • jp nl
    Modifié (May 2023)
    J'ai sorti mon bouquin.
    Si $A$ est scindé, $A=(X-a_1)^{r_1}\dots(X-a_p)^{r_p}$, alors $A'/A=\sum_{k=1}^p r^k/(X-a_k)$.
    Ici : $P'/P$ admet une unique décomposition en éléments simples $\alpha/(X-a)+\beta/(X-b)$.
    $P$ est scindé (on travaille sur $\C$), donc par unicité, $a$ et $b$ sont les seules racines de $P$, avec les multiplicités $\alpha$ et $\beta$ (qui sont donc entiers naturels).
    Donc $P=(X-a)^{\alpha}(X-b)^{\beta}$. De plus, on sait que $\alpha+\beta=n$.
    J'imagine qu'il faut rajouter quelque part que l'on cherche $P$ unitaire.
  • Ou alors, tu multiplies par une constante non nulle...
  • Merci pour tes super indications !
    Succinctes, décisives !
  • C'est un sujet d'oral de CCINP non ?
  • Oui, trouvé sur BEOS.
    Pas simple je trouve (à mon goût).
Connectez-vous ou Inscrivez-vous pour répondre.