Méthode naïve — Les-mathematiques.net The most powerful custom community solution in the world

Méthode naïve

Bonsoir,

Je ne comprends pas la question et du coup le corrigé non plus.115036

Réponses

  • Dans le tableau somme (A,B,N) il faut mettre à 1 que les éléments qui sont à 1 à la fois dans le tableau A et dans le tableau B ?
  • Non, ce que tu proposes est une implantation de l'intersection de $A$ et $B$; or tu es supposé implanter la somme.
  • Je ne comprends pas la correction du coup.115038
    2.png 222.6K
  • On a
    - $A\left[i \right] == 1$ ssi $i \in A$
    - $B[j] == 1$ ssi $j \in B$
    - et $l[i+j] == 1$ ssi $i+j \in l$.

    Si $i \in A$ et $j \in B$, on veut que $i+j \in l$.

    edit: Je me rends compte que j'utilise les mêmes lettres pour les tableaux et les ensembles, contrairement à ton énoncé. Je corriger avec leurs notations:

    On a
    - $A\left[i \right] == 1$ ssi $i \in X$
    - $B[j] == 1$ ssi $j \in Y$
    - et $l[i+j] == 1$ ssi $i+j \in X+Y$.

    Si $i \in X$ et $j \in Y$, on veut que $i+j \in X+Y$.
  • Je crois que je n'ai toujours pas compris la question.

    J'ai exécuté le programme je ne comprends pas comment est obtenue la liste finale.115050
    2.png 44.3K
  • @Alesha
    Je n'arrive pas à comprendre concrètement ce que signifie la somme des tableaux A et B. J'ai programmé un exemple et je ne comprends toujours pas.

    Et ça me handicape car je ne comprends pas le rapport avec la dernière question où je dois utiliser la fonction somme.115056
    1.png 190.4K
  • Dans l'exemple que tu as posté, on a $X = \{ 0, 2, 5 \}$ et $Y = \{ 0, 2, 3, 4, 5 \}$. Qu'est-ce que $X+Y$?
  • Je pense comme Alesha que ce que tu n'as pas compris, c'est la définition de l'ensemble $X+Y$... qui est pourtant la même définition que la définition usuelle (en particulier celle utilisée pour la somme de deux sous-espaces vectoriels).

    Attention, cependant, la fonction demandée restreint l'ensemble. Il faut en fait donner une représentation de $(A+B)\cap \{1,\dots,N\}$ (logiquement, ce devrait même être $(A+B)\cap \{0,\dots,N\}$ mais l'énoncé est mal fichu à cet endroit).
  • Je crois que je viens de comprendre.

    @Alesha

    $X+Y= \{0,2,3,4,5,6,7,10 \}$ ?

    @Bisam
    Ok j'ai beaucoup manipulé la somme d'espace vectoriel normalement j'ai assimilé cette notion.
    Le corrigé garde $\{0, \cdots, N \}$.
    Il suffit de supprimer le premier élément de la liste somme non ?
  • Pourquoi $8 \notin X+Y$?
  • Je l'ai oublié :-X
  • Et ce n'est pas le seul !!

    Sérieusement, en voyant ça, on sait qu'on ne doit pas te croire quand tu racontes que tu as fait telle ou telle partie d'un, sujet d'ENS ou d'agreg ... et je plains tes élèves, tu dois faire la même chose sur les exercices de quatrième : des corrigés faux !
Connectez-vous ou Inscrivez-vous pour répondre.
Success message!