Binôme de Newton et somme de contrôle — Les-mathematiques.net The most powerful custom community solution in the world

Binôme de Newton et somme de contrôle

Bonjour,
Je m'initie doucement au problème de code de détection et de correction d'erreur. J'essaie de calculer dans un cas très simple la probabilité d'avoir une erreur malgré même si la somme est correcte. Dans un premier temps il s'agit de $n$ bits dont un seul bit de contrôle (contrôle par parité) sachant que chaque bit a une probabilité $p$ d'avoir fait une transition.
Dans ce cas là, j'estime à vue de nez que la probabilité d'avoir une erreur malgré une somme correcte est de $\frac{A}{(1-p)^n+A},$ où $A=\displaystyle \sum_{k=1}^{E(n/2)} \binom{n}{2 k} (1-p)^{2k} p^{n-2k}$ (où $E$ désigne la partie entière). Je peux programmer pour faire le calcul, mais je suis suppose qu'il y a une expression simplifiée de cette somme (sans savoir ce que ça peut être, parce que pour moi, la pratique des trucs à base de coefficient binomiaux, ça s'est arrêté en terminale). Si quelqu'un a une idée, je suis très intéressé.
Merci d'avance.

Réponses

  • Bonsoir Titi.

    Tu peux calculer $(p + (1-p))^n$, $(p - (1-p))^n$ et faire la (demi) somme des deux.

    e.v.
    À ta naissance, tu pleurais tout le temps et tout le monde souriait autour de toi. Fais en sorte qu'à ta mort, ce soit l'inverse. (Proverbe arabe)
  • Ah oui, c'est vachement bien ça, en plus ça donne des idées pour des cas légèrement plus compliqués. Merci beaucoup ev.
Connectez-vous ou Inscrivez-vous pour répondre.
Success message!