Combinaison n groupes de 2 parmi 2n — Les-mathematiques.net The most powerful custom community solution in the world

Combinaison n groupes de 2 parmi 2n

Bonjour,
je n'ai jamais été très bon en combinatoire et mon esprit cale ...
Je cherche à savoir combien il est possible de constituer de n groupes de 2 éléments parmi un ensemble de 2n.

Exemple : n=3
Les éléments sont (a,b,c,d,e,f)
Une combinaison possible est donc {(a,b),(c,d),(e,f)}
L'ordonnancement à l'intérieur d'un groupe de 2 n'a pas d'importance.
L'ordonnacement des groupes de 2 à l'intérieur de la combinaison n'a pas d'importance.

Merci pour votre aide.

Réponses

  • Comme l'ordonnancement à l'intérieur d'un groupe de 2 n'a pas d'importance, ce n'est pas
    $\{(a,b),(c,d),(e,f)\}$, mais $\{\{a,b\},\{c,d\},\{e,f\}\}$.

    Ceci se compte avec le lemme des bergers: on considère l'application de
    $\mathfrak{S}(\{1,\dots,2n\})$ qui à $\sigma=(\sigma(1),\dots \sigma(2n))$
    associe $\{\{\sigma(1),\sigma(2)\},\{\sigma(3),\sigma(4)\},\dots,\{\sigma(2n-1),\sigma(2n)\}\}$.

    On se rend compte alors que chaque point de l'ensemble d'arrivée a $n!2^n$ antécédents.
  • Ton exemple correspond plutôt à $n=3$, non ?
    Tu peux procéder ainsi : tu ranges tes deux éléments dans l'ordre que tu veux et tu découpes en tranches de $2$ : les deux premiers, les deux suivants etc.. Combien de possibilités de faire ça ?
    Après tu as le loisir de permuter comme tu veux les $n$ groupes de $2$ (combien de façons de le faire ?) et tu as aussi le loisir de permuter les deux éléments dans autant de groupes que tu choisis (combien de façons de le faire ?).
  • effectivement n=3
    je vais regarder tes elements de réponses

    Merci beaucoup
  • Regarde aussi la réponse d'aléa. Il dit de façon plus formelle la même chose que moi.
Connectez-vous ou Inscrivez-vous pour répondre.
Success message!