Fonction dérivable commutant à tout polynôme
Réponses
-
Pardon pour le doublon.
-
A part la fonction identité...
Si ça commute avec tous les polynômes, en particulier, ça commute avec les fonctions constantes.... -
Oups...
Mais c'est donc si facile !
Je partais sur les monômes $x^k$, puis j'avais une équation fonctionnelle à résoudre.
Comme j'ai trouvé cet exercice dans le chapitre "fonctions dérivables", et comme il y a bien précisé dans l'énoncé que la fonction est dérivable, j'ai été complètement induit en erreur...
Bref !
Connectez-vous ou Inscrivez-vous pour répondre.
Bonjour!
Catégories
- 165.4K Toutes les catégories
- 62 Collège/Lycée
- 22.2K Algèbre
- 37.6K Analyse
- 6.3K Arithmétique
- 61 Catégories et structures
- 1.1K Combinatoire et Graphes
- 13 Sciences des données
- 5.1K Concours et Examens
- 23 CultureMath
- 51 Enseignement à distance
- 2.9K Fondements et Logique
- 10.8K Géométrie
- 84 Géométrie différentielle
- 1.1K Histoire des Mathématiques
- 79 Informatique théorique
- 3.9K LaTeX
- 39K Les-mathématiques
- 3.5K Livres, articles, revues, (...)
- 2.7K Logiciels pour les mathématiques
- 26 Mathématiques et finance
- 342 Mathématiques et Physique
- 5K Mathématiques et Société
- 3.3K Pédagogie, enseignement, orientation
- 10.1K Probabilités, théorie de la mesure
- 804 Shtam
- 4.2K Statistiques
- 3.8K Topologie
- 1.4K Vie du Forum et de ses membres