tipe : mesure et mouvement brownien
bonjour a tous
j'ai une idee de tipe pour ma rentree en 5/2.
je veux vraiment faire de la theorie de la mesure et si possible l'appliquer en physique pour le cote "personnel". On m'a parle de theorie ergodique.
Est-ce possible (s'il y a un rapport) d'étudier le mouvement brownien par exemple?
ca me fournirait a la fois des experiences et des programmes informatiques de modelisation.
Seulement voila : j'ai fait pas mal de th de la mesure mais pas du reste
avez vous des conseils, des ouvrages a lire?
j'apprecierais beaucoup
merci
j'ai une idee de tipe pour ma rentree en 5/2.
je veux vraiment faire de la theorie de la mesure et si possible l'appliquer en physique pour le cote "personnel". On m'a parle de theorie ergodique.
Est-ce possible (s'il y a un rapport) d'étudier le mouvement brownien par exemple?
ca me fournirait a la fois des experiences et des programmes informatiques de modelisation.
Seulement voila : j'ai fait pas mal de th de la mesure mais pas du reste
avez vous des conseils, des ouvrages a lire?
j'apprecierais beaucoup
merci
Réponses
-
Vraiment personne ?
-
En licence, j'ai eu un cours de 3 h (de physique) sur le concept d'un mouvement aléatoire. Si je retrouve mes notes je pourrais t'en parler mieux.
Ce dont je me souviens, c'est que ça servait par exemple pour décrire la dispersion d'un colorant qu'on verse dans de l'eau.
Et il y a de vraies maths derrière en plus. -
egalement les particules ds un milieu visqueux !!
A la base, ce mouvement a été observé empiriquement la 1ere fois par un botaniste qui constata les mouvement desordonné des particules de pollen ds un milieu liquide.
On se sert régulièrement du mouvement brownien pour modéliser les cours des actifs financiers. C'est drole de découvrir ce point commun entre la finance et la physique !!
Le processus suivi par le cours des actions est en général :
$$ S= mSdt + S$\sigma$dz$$
Où $dz$ est un mouvement brownien standard, m et le rendement esperé du marché et $\sigma$ la volatilité du marché.
Je pense que ça peut évoquer des choses aux physiciens... -
Bonjour le poulpe , tu n'as pas encore trouvé de quoi t'inspirer ? consulter par exemple : Arnold et Avez : problèmes ergodiques en mécanique classique . Editions Gauthier Villars , cet ouvrage contient des idées à élargir
-
Bonjour,
<BR>
<BR>Traiter du mouvement brownien en 5/2 me paraît être une bonne idée.
<BR>
<BR>Moi j'y verrais une partie théorique ou l'on montre que l'on peut retrouver l'équation de la chaleur (macroscopique) par des modélisations aléatoires sur le mouvement des particules (microscopique) à l'aide d'un mouvement Brownien (au lieu de la loi de Joule, comme c'est le cas dans le programme de spé).
<BR>
<BR>Ensuite le mouvement brownien se prête très bien aux simulations, donc il y a une partie informatique très facile à mettre en oeuvre (et en général très appréciée des examinateurs).
<BR>
<BR>Pour commencer:
<BR>
<BR><a href=" www.ulg.ac.be/sciences/pedagogique/ dossierpds2005/Einstein3.pdf "> www.ulg.ac.be/sciences/pedagogique/ dossierpds2005/Einstein3.pdf </a>
<BR>
<BR>@+<BR> -
Egalement les particules dans un milieu visqueux !!
A la base, ce mouvement a été observé empiriquement la 1ère fois par un botaniste qui constata les mouvements désordonnés des particules de pollen dans un milieu liquide.
On se sert régulièrement du mouvement brownien pour modéliser les cours des actifs financiers. C'est drôle de découvrir ce point commun entre la finance et la physique !!
Le processus suivi par le cours des actions est en général : $$ S= mSdt + S\sigma dz$$ Où $dz$ est un mouvement brownien standard, $m$ est le rendement espéré du marché et $\sigma$ la volatilité du marché.
Je pense que ça peut évoquer des choses aux physiciens...
Connectez-vous ou Inscrivez-vous pour répondre.
Bonjour!
Catégories
- 164.7K Toutes les catégories
- 46 Collège/Lycée
- 22.1K Algèbre
- 37.4K Analyse
- 6.3K Arithmétique
- 57 Catégories et structures
- 1.1K Combinatoire et Graphes
- 13 Sciences des données
- 5.1K Concours et Examens
- 19 CultureMath
- 50 Enseignement à distance
- 2.9K Fondements et Logique
- 10.6K Géométrie
- 80 Géométrie différentielle
- 1.1K Histoire des Mathématiques
- 73 Informatique théorique
- 3.9K LaTeX
- 39K Les-mathématiques
- 3.5K Livres, articles, revues, (...)
- 2.7K Logiciels pour les mathématiques
- 24 Mathématiques et finance
- 331 Mathématiques et Physique
- 4.9K Mathématiques et Société
- 3.3K Pédagogie, enseignement, orientation
- 10.1K Probabilités, théorie de la mesure
- 792 Shtam
- 4.2K Statistiques
- 3.8K Topologie
- 1.4K Vie du Forum et de ses membres