Intuition variation quadratique

Bonjour à tous,
En calcul stochastique, une notion importante est la variation quadratique.

Considérons par exemple le mouvement brownien $(B_t)_{t \in [0,T]}$.
Etant donné $T > 0$ fixé et $0=t_0 < t_1 < \dots < t_n = T $ une subdivision de $[0, T]$, on pose $\Delta = \displaystyle\max_{i \in [|0, n-1|]} |t_{i+1} - t_i|$.
La variation quadratique de B est alors $V_Q = \displaystyle\lim_{\Delta \rightarrow \;0} \displaystyle \sum_{i=0}^{n-1} (B_{t_{i+1}} - B_{t_{i}})^2 $

(elle est même égale à $T$).

Intuitivement, que représente cette quantité ? Comment devrais-je me la représenter ?

Merci d'avance !
Guillaume

Réponses

  • Une façon de le voir est la suivante. Si $f: [0,T] \to \R$ est une fonction lisse la longueur du chemin correspondant est $$

    \ell = \int_0^T |f'(t)|\,dt = \lim_{\Delta \to 0} \sum_k |f'(t_k)| (t_{k+1}-t_k) = \lim_{\Delta \to 0} \sum_k \left|\frac{f(t_{k+1}-f(t_k))}{t_{k+1}-t_k}\right| (t_{k+1}-t_k) = \lim_{\Delta \to 0} \sum_k | f(t_{k+1}) - f(t_k) |

    $$ Mais la convergence utilise de façon essentielle la dérivabilité de $f$, alors que les trajectoires du mouvement brownien ne sont pas dérivables. En revanche, elles sont p.s. $\alpha$-Holder pour $\alpha < 1/2$ Entre $t$ et $t+dt$, l'accroissement de $B$ est d'ordre $\sqrt{t}$ donc la somme ci-dessus va être p.s. infinie. Mais on peut considérer la $p$-variation totale : $$

    V_p(f) = \lim_{\Delta \to 0} \sum_k | f(t_{k+1}) - f(t_k) |^p

    $$ Pour $p = 2$ (inverse de l'exposant de Hölder), la variation quadratique du mouvement brownien converge vers une limite non triviale.

    Après en pratique, ça s'utilise surtout comme mesure de la variance $\mathrm{Var}(B_T) = T$ ou plus généralement comme compensateur: $B^2 - \langle B,B\rangle$ est une martingale.
  • Très bien, merci beaucoup pour cette explication afk !
  • Bonjour afk,

    Merci pour l'intervention sur ce fil, mais j'ai une question à ce propos:

    Dans la réponse il est question que l'accroissement de $\boldsymbol{B}$ entre $\mathrm{t}$ et $\mathrm{t}$+$\mathrm{dt}$ est de l'ordre $\sqrt{t}$. N'est-ce pas plutôt de l'ordre $\sqrt{\mathrm{dt}}$?

    Il me semble que cela est contraire à la stationnarité de la loi du mouvement Brownien.

    Merci de m'éclairer.
  • Oui c'est bien $\sqrt{dt}$.
Connectez-vous ou Inscrivez-vous pour répondre.