À propos de la conjecture de Syracuse
Bonjour à tous
Je ne suis pas mathématicien et ne m'intéresse aux maths que de loin.
J'aime par contre jouer avec les tableurs...
Dans Excel, j'ai créé un tableau avec, dans la première colonne, les nombres impairs de 1 à 1000.
Dans les colonnes suivantes, les résultats des opérations sur chaque nombre.
J'ai ensuite mis en vert les nombres pairs et rouge les nombres impairs.
- Ma première colonne était donc toute rouge,
- Ma seconde toute verte.
- La troisième colonne avait une case sur deux verte et l'autre rouge.
- Dans la quatrième colonne, j'avais 1 case rouge, 3 cases vertes et cela se répétait. (somme : 4)
- Dans la cinquième : 3 vertes, 1 rouge, 2 vertes, 2 rouges. Puis répétition. (Somme : 8)
- Dans la sixième, on commence par 2 vertes puis répétition de : 1 rouge 1 vert 2 rouges 6 verts 2 rouges 4 verts (Somme : 16)
- Dans la septième :1 puis 611143 (Somme : 16)
- Dans la huitième : 1112311121 puis : 43116131123141 (Somme : 32)
- Dans la neuvième, c'est plus intéressant : La répétition est :
2161533121221261215241431221615331212212612 242414312 (Somme : 128)
Mais on peut voir qu'il y a une "sous-suite :
21615331212212612 et 152414312 (Somme : 64)
21615331212212612 et 242414312 (Somme : 64) - Pour la dixième, je vais directement diviser la répétion en 4 zones de 26 chiffres :
14253332192511211311212116
14141133321216161211152146
14253332192512111311212116
15141133321216161211152146
différentes mais qui se "ressemblent" et la somme de chaque partie est 64, la somme totale étant donc de 256
Je ne sais pas si cela a un intérêt quelconque mais me demandais s'il y avait quelque chose d'écrit quelque part à ce sujet.
Merci d'avance!
Mots clés:
Réponses
-
Plutôt que somme, je parlerais de 'périodicité'.
C'est quelque chose dont j'avais déjà parlé, il me semble que c'était dans cette longue discussion mais je n'ai pas vérifié. Si je me souviens bien, je parlais essentiellement de 1024. Sinon peut-être ici
Mais tu n'y trouveras rien de sensationnel. Il y a effectivement cette périodicité. 2 termes qui ont $k \times 2^n$ comme différence ont les mêmes opérations sur les $n$ premières étapes.Tu me dis, j'oublie. Tu m'enseignes, je me souviens. Tu m'impliques, j'apprends. Benjamin Franklin
L'hypocrisie est pire qu'une vérité qui fait mal. Franck Ntasamara.
Connectez-vous ou Inscrivez-vous pour répondre.
Bonjour!
Catégories
- 165.2K Toutes les catégories
- 61 Collège/Lycée
- 22.1K Algèbre
- 37.5K Analyse
- 6.3K Arithmétique
- 58 Catégories et structures
- 1.1K Combinatoire et Graphes
- 13 Sciences des données
- 5.1K Concours et Examens
- 20 CultureMath
- 51 Enseignement à distance
- 2.9K Fondements et Logique
- 10.7K Géométrie
- 83 Géométrie différentielle
- 1.1K Histoire des Mathématiques
- 79 Informatique théorique
- 3.9K LaTeX
- 39K Les-mathématiques
- 3.5K Livres, articles, revues, (...)
- 2.7K Logiciels pour les mathématiques
- 25 Mathématiques et finance
- 337 Mathématiques et Physique
- 5K Mathématiques et Société
- 3.3K Pédagogie, enseignement, orientation
- 10.1K Probabilités, théorie de la mesure
- 801 Shtam
- 4.2K Statistiques
- 3.8K Topologie
- 1.4K Vie du Forum et de ses membres