Ensemble image et image réciproque

Mar0wwa
Modifié (July 2022) dans Fondements et Logique
Bonjour, je voudrais poser une question qui concerne les ensembles. Quand est-ce que l'on peut dire que : 
f(A) c B      <=>      A c f-1(B) ?

Réponses

  • "c" inclusion 
    "f-1" l'image réciproque
    "A et B" des ensembles 
  • "Toutes les images des éléments de A sont dans B" équivaut à "Parmi tous les antécédents des éléments de B on retrouve A en entier".
    The fish doesnt think. The Fish doesnt think because the fish knows. Everything. - Goran Bregovic
  • Mar0wwa, 
    pourquoi ne réfléchis-tu pas à tes questions avant de les poser ? Surtout quand, comme ici, la réponse est évidente. Tu ne vas quand même pas apprendre par cœur le milliard de questions simples du programme de L1.

    Cordialement. 
  • Surtout qu'il vaudrait mieux apprendre les réponses. :D
    La vie est injuste surtout pour ceux qui partent avant les cheveux blancs.
  • gerard0
    Modifié (July 2022)
    J'avais oublié l'habitude, ici, de tout prendre au pied de la lettre. Mais j'ai ri.
    Cordialement P
  • geo
    geo
    Modifié (July 2022)
    Amuse toi à redémontrer tout ça c'est comme ça que ça rentre...
  • Mar0wwa
    Modifié (July 2022)
    [Inutile de recopier un message présent sur le forum. Un lien suffit. AD]
    Bonjour Gérard, j'ai essayé de la comprendre mais j'ai pas pu, j'ai cherché par internet dans les définitions d'image d'un ensemble ou d'une image réciproque pour trouver cette équivalence mais j'ai trouvé rien.
    Merci beaucoup pour votre aide.
  • Mar0wwa
    Modifié (July 2022)
    [Inutile de recopier un message présent sur le forum. Un lien suffit. AD]
    Merci Soc.
  • Dom
    Dom
    Modifié (July 2022)
    C’est « résolu », on dirait. 
    J’ajoute mon grain de sel : pour trouver une preuve formelle il faut commencer par écrire les choses, déplier les définitions (inclusion, image, image directe, image réciproque). 
    Et parfois on s’en sort très bien.
    On peut bien entendu commencer par des petits exemples simples (prenons une fonction et deux ensembles pas trop compliqués ou encore plus visuellement, dessinons des patates, etc.). 
  • Bonjour,
    On peut démontrer l'équivalence à partir des relations classiques suivantes (faciles à prouver) :smile:
    -- $f$ respecte l'inclusion
    -- $f^{-1}$ respecte l'inclusion
    -- $A$ est inclus dans $f^{-1}(f(A))$
    -- $f(f^{-1}(A))$ est inclus dans $A$.
    A+
    Au siècle du mensonge universel, dire la vérité devient un acte révolutionnaire. (George Orwell)
  • On peut la démontrer par double implication à partir des définitions et c'est élémentaire. Pas besoin de propriétés plus compliquées que la conclusion ! 
  • OShine
    Modifié (July 2022)
    C'est très facile.
    Supposons que $f(A) \subset B$. Montrons que $A \subset f^{-1} (B)$.
    Soit $x \in A$. Il faut montrer que $x \in f^{-1} (B)$. Mais $x \in f^{-1} (B) \Leftrightarrow f(x) \in B$.
    Or $x \in A$ donc $f(x) \in B$ car $f(A) \subset B$.
    Donc  $\boxed{f(A) \subset B \implies A \subset f^{-1} (B)}$
    Réciproquement, supposons que  $A \subset f^{-1} (B)$ et montrons que $f(A) \subset B$.
    Soit $x \in A$. Montrons que $f(x) \in B$. Comme $A \subset f^{-1} (B)$ alors $x \in f^{-1} (B)$ donc $f(x) \in B$.
     $\boxed{  A \subset f^{-1} (B) \implies f(A) \subset B }$
    Enfin : $\boxed{f(A) \subset B  \Longleftrightarrow A \subset f^{-1} (B)}$
  • Bravo OShine, une rédaction assez propre.
  • En effet, on suit bien le raisonnement. 

    Petite remarque : peut-être faut-il expliciter cette équivalence (le symbole n’est utilisé qu’une seule fois et c’est de celle-là que je parle). Je dis bien « peut-être » car ce ne sera pas l’avis de tout le monde. 
Connectez-vous ou Inscrivez-vous pour répondre.