Pas de titre

Alain Soyeur¹, François Capaces², and Emmanuel Vieillard-Baron³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse

², ,

³Enseignant en CPGE, Lycée Kléber, Strasbourg

 $24~\mathrm{juin}~2023$

Exercice 0.1 $\bigstar \bigstar$ Pas de titre

Soit une fonction $f : \mathbb{R} \to \mathbb{R}$ dérivable. Montrer que si $f'(x) \xrightarrow[x \to +\infty]{} +\infty$ alors $f(x) \xrightarrow[x \to +\infty]{} +\infty$. La réciproque est-elle vraie?

Solution : Puisque $f'(x) \xrightarrow[x \to +\infty]{} +\infty$, il existe A > 0 tel que $\forall x \geqslant A$, $f'(x) \geqslant 1$. Soit alors $x \geqslant A$. D'après le théorème des accroissements finis, il existe $c \in A$, $x \in A$, $x \in A$, $x \in A$. Par conséquent, $x \in A$, $x \in$

Références