Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ²Enseignant en CPGE, Lycée Kléber, Strasbourg ³, ,

22 septembre 2021

Exercice 0.1 \bigstar Pas de titre

Montrer que pour tout $n \in \mathbb{N}^*$, on a :

$$\frac{1}{n+1} \leqslant \ln\left(n+1\right) - \ln\left(n\right) \leqslant \frac{1}{n}$$

Solution: Soit $n \in \mathbb{N}^*$. Considérons l'application $f: \begin{cases} [n,n+1] & \longrightarrow \mathbb{R} \\ x & \longmapsto \ln x \end{cases}$. La fonction f est dérivable sur [n,n+1] donc d'après l'inégalité des accroissements finis :

$$m((n+1)-n) \le \ln(n+1) - \ln n \le M((n+1)-n)$$

où $m = \inf_{[n,n+1]} f'$ et où $M = \sup_{[n,n+1]} f'$. Comme pour tout $t \in \mathbb{R}_+^*$, f'(t) = 1/t, f' est décroissante, et $m = \frac{1}{n+1}$, $M = \frac{1}{n}$. On en déduit alors les inégalités.

Références