Pas de titre

Alain Soyeur¹, Emmanuel Vieillard-Baron², and François Capaces³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ²Enseignant en CPGE, Lycée Kléber, Strasbourg

22 septembre 2021

Exercice 0.1 $\bigstar \bigstar$ Pas de titre

On considère la fonction $f:]0, +\infty[\longrightarrow \mathbb{R}$ définie par $f(x) = x^{n-1} \ln x$ où $n \in \mathbb{N}^*$. Calculez $f^{(n)}$

Solution : La fonction f est de classe C^{∞} sur l'intervalle $]0,+\infty|$ comme produit de fonctions \mathcal{C}^{∞} . Notons g la fonction définie par $g(x) = x^{n-1}$ et h la fonction définie par $h(x) = \ln(x)$. D'après la formule de Leibniz, pour x > 0,

$$f^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} g^{(k)}(x) h^{(n-k)}(x)$$

Mais on montre facilement que pour $k \leq n-1$,

$$g^{(k)}(x) = \frac{(n-1)!}{(n-k-1)!} x^{n-1-k}$$

et que $g^{(n)} = 0$, puis que $\forall k \ge 1$,

$$h^{(k)}(x) = (-1)^{k-1} \frac{(k-1)!}{r^k}$$

Donc

$$f^{(n)}(x) = \sum_{k=0}^{n-1} \binom{n}{k} \frac{(n-1)!}{(n-k-1)!} x^{n-1-k} (-1)^{n-k-1} \frac{(n-k-1)!}{x^{n-k}}$$

$$= \frac{(-1)^{n-1} (n-1)!}{x} \sum_{k=0}^{n-1} \binom{n}{k} (-1)^k$$

$$= \frac{(-1)^{n-1} (n-1)!}{x} [(1-1)^n - (-1)^n]$$

$$= \boxed{\frac{(n-1)!}{x}}$$

Références