Pas de titre

Alain Soyeur¹, François Capaces², and Emmanuel Vieillard-Baron³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse

³Enseignant en CPGE, Lycée Kléber, Strasbourg

13 mai 2023

Exercice 0.1 $\bigstar \star \star \star$ Pas de titre

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ dérivable en 0 telle que f(0) = 0. Trouver la limite de la suite de terme général

$$u_n = \sum_{k=0}^{n} \binom{n}{k} f\left(\frac{2^k}{3^n}\right)$$

Indication: Utiliser le développement limité à l'ordre 1 de f en 0: f(x) = xf'(0) + $x\varepsilon(x)$. L'idée est que pour x petit, « f(x) ressemble à xf'(0) ». La suite se comporte comme $f'(0)\sum_{k=0}^{n} {n \choose k} \frac{2^k}{3^n} = f'(0)$.

Solution : Écrivons le développement limité à l'ordre 1 de f en 0 :

$$f(x) = xf'(0) + x\varepsilon(x) \text{ avec } \varepsilon(x) \xrightarrow[x \to 0]{} 0$$

Alors pour tout $n \in \mathbb{N}$

$$u_n = f'(0) \sum_{k=0}^{n} \binom{n}{k} \frac{2^k}{3^n} + \sum_{k=0}^{n} \binom{n}{k} \frac{2^k}{3^n} \varepsilon \left(\frac{2^k}{3^n}\right) = f'(0) + v_n \text{ avec } v_n = \sum_{k=0}^{n} \binom{n}{k} \frac{2^k}{3^n} \varepsilon \left(\frac{2^k}{3^n}\right)$$

car d'après la formule du binôme $\sum_{k=0}^{n} \binom{n}{k} 2^k = (1+2)^n = 3^n$. Montrons que $v_n \xrightarrow[n \to +\infty]{} 0$. Soit $\mu > 0$. Il existe $\alpha > 0$ tel que $\forall x \in [-\alpha, \alpha], |\varepsilon(x)| \leq \mu$.

Comme la suite $\frac{2^n}{3^n} \xrightarrow[n \to +\infty]{} 0$, il existe $N \in \mathbb{N}$ tel que $\forall n \geqslant N, \frac{2^n}{3^n} \leqslant \alpha$. Soit alors $n \geqslant N$. Puisque

 $\forall k \in [0, n], \ 0 \leqslant \frac{2^k}{3^n} \leqslant \frac{2^n}{3^n} \leqslant \alpha, \ il \ vient \ que$

$$\forall k \in [0, n], \left| \varepsilon \left(\frac{2^k}{3^n} \right) \right| \leqslant \mu$$

Mais alors
$$|v_n| \leqslant \sum_{k=0}^n \binom{n}{k} \frac{2^k}{3^n} \left| \varepsilon \left(\frac{2^k}{3^n} \right) \right| \leqslant \mu \sum_{k=0}^n \binom{n}{k} \frac{2^k}{3^n} = \mu$$
Par conséquent, $u_n \xrightarrow[n \to +\infty]{} f'(0)$.

Références