Pas de titre

Alain Soyeur¹, François Capaces², and Emmanuel Vieillard-Baron³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse ², , ³Enseignant en CPGE, Lycée Kléber, Strasbourg

14 mai 2023

Exercice $0.1 \longrightarrow \star \star$ Pas de titre

Montrer que les suites suivantes (u_n) et (v_n) , données par leur terme général, sont adjacentes :

$$u_n = n - \left(\cos 1 + \cos\frac{1}{2} + \dots + \cos\frac{1}{n}\right)$$
 et $v_n = u_n + \sin\frac{1}{n}$

Solution : La suite (u_n) est clairement croissante et $u_n - v_n \xrightarrow[n \to +\infty]{} 0$. Reste à montrer que (v_n) est décroissante. Soit $n \in \mathbb{N}$. On calcule en utilisant les développements limités usuels :

$$v_{n+1} - v_n = u_{n+1} - u_n + \sin\frac{1}{n+1} - \sin\frac{1}{n}$$

$$= n + 1 - n - \cos\frac{1}{n+1} + \sin\frac{1}{n+1} - \sin\frac{1}{n}$$

$$= 1 - \left(1 - \frac{1}{2(n+1)^2}\right) + \frac{1}{n+1} - \frac{1}{n} + o\left(\frac{1}{(n+1)^2}\right)$$

$$= \frac{n+2n(n+1)-2(n+1)^2}{2n(n+1)^2} + o\left(\frac{1}{(n+1)^2}\right)$$

$$= -\frac{n+2}{2n(n+1)^2} + o\left(\frac{1}{(n+1)^2}\right)$$

La suite $(v_{n+1}-v_n)$ est équivalente à une suite négative donc à partir d'un certain rang on a $v_{n+1}-v_n \leq 0$. On montre ainsi que (v_n) est décroissante à partir d'un certain rang. Les deux suites sont bien adjacentes et elles convergent vers une même limite.

Références