Pas de titre

Alain Soyeur¹, François Capaces², and Emmanuel Vieillard-Baron³

¹Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse

², ,
³Enseignant en CPGE, Lycée Kléber, Paris

9 avril 2023

Exercice 0.1 $\bigstar \star$ Pas de titre

Soit une fonction $f:[0,+\infty[\mapsto\mathbb{R}\ continue\ sur\ \mathbb{R}\ telle\ que$

$$f(x) \xrightarrow[x \to +\infty]{} l \in \mathbb{R}$$

Montrez que la fonction f est uniformément continue sur \mathbb{R} .

Solution : Soit $\varepsilon > 0$. Comme $f(x) \xrightarrow[x \to +\infty]{} l$, il existe A > 0 tel que $\forall x \geqslant A$, $|f(x) - l| \leqslant \varepsilon/2$. La fonction f est continue sur le segment [0, A + 2] et donc d'après le théorème de Heine, est uniformément continue sur ce segment. Donc il existe $\eta > 0$ tel que

$$\forall (x,y) \in [0, A+1]^2 \ |x-y| \leqslant \eta \Rightarrow |f(x) - f(y)| \leqslant \varepsilon$$

Posons $\eta' = \min(\eta, 1)$. Soit maintenant $(x, y) \in [0, +\infty[^2 \text{ tels que } |x - y| \le \eta'$. Étudions les cas suivants :

- si $(x,y) \in [0, A+1]^2$, on a bien puisque $|x-y| \leqslant \eta$, $|f(x)-f(y)| \leqslant \varepsilon$;
- si par exemple $x \in [0, A+1]$ et $y \in [A+1, +\infty[$. Comme $|x-y| \le \eta' \le 1$, on a $x \in [A, A+1]$ et $y \in [A+1, +\infty[$, $donc \ x, y \in [A, +\infty[$ et donc

$$|f(x)-f(y)|=|[f(x)-l]+[l-f(y)]|\leqslant |f(x)-l|+|f(y)-l|\leqslant \varepsilon/2+\varepsilon/2=\varepsilon$$

Donc dans tous les cas, $|f(x) - f(y)| \le \varepsilon$. La fonction est bien uniformément continue.

Références