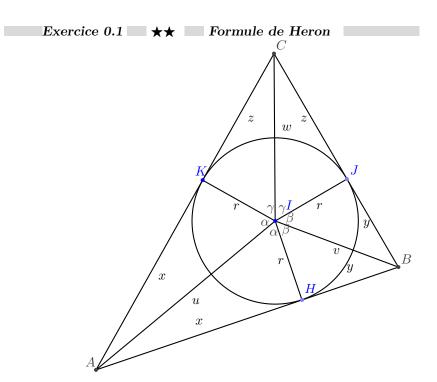
Formule de Heron

Emmanuel Vieillard-Baron¹ and Alain Soyeur²

¹Enseignant en CPGE, Lycée Kléber, Strasbourg ²Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse

2 janvier 2022



Soit I le centre du cercle inscrit au triangle ABC. Les longueurs des côtés sont a=y+z, b=z+x et c=x+y. On appelle s le demi-périmètre x+y+z. Les angles en I vérifient $\alpha+\beta+\gamma=\pi$.

- 1. Démontrer que $r + ix = ue^{i\alpha}$.
- 2. Calculer (r+ix)(r+iy)(r+iz).
- 3. En prenant les parties imaginaires, démontrer que $xyz=r^2(x+y+z)$.
- 4. En déduire que $r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$.

5. Démontrer que l'aire du triangle ABC vaut
$$\mathscr{A} = \frac{ra}{2} + \frac{rb}{2} + \frac{rc}{2} = \sqrt{s(s-a)(s-b)(s-c)} \text{ (Formule de Heron)}$$

Solution:

- 1. Dans le triangle AIH rectangle en H, $r = u \cos \alpha$ et $x = u \sin \alpha$, d'où $r + ix = u(\cos \alpha + i\alpha)$ $i\sin\alpha$) = $ue^{i\alpha}$.
- 2. $(r+ix)(r+iy)(r+iz) = ue^{i\alpha}ve^{i\beta}we^{i\gamma} = uvwe^{i(\alpha+\beta+\gamma)} = uvwe^{i\pi} = -uvw.$
- 3. En prenant les parties imaginaires, on a $0 = r^2z + r^2y + r^2x xyz$, d'où le résultat.
- 4. On en déduit $r^2s=xyz$. Or s=x+(y+z)=x+a d'où x=s-a. Donc xyz=(s-a)(s-b)(s-c) et donc $r^2=\frac{(s-a)(s-b)(s-c)}{s}$, d'où le résultat.
- 5. L'aire du triangle ABC égale l'aire de BIC + celle de CIA + celle de AIB à savoir $\frac{ra}{2} + \frac{rb}{2} + \frac{rc}{2}.$

Références