Pas de titre

Emmanuel Vieillard-Baron¹, Alain Soyeur², and François Capaces³

¹Enseignant en CPGE, Lycée Kléber, Strasbourg ²Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse

28 décembre 2021

Exercice $0.1 \longrightarrow \star$ Pas de titre

Utiliser des équivalents ou des croissances comparées pour étudier la convergence des suites suivantes.

1.
$$u_n = n \left(e^{\sin(\frac{\pi}{n})} - 1 \right) + (\ln n)^{\frac{1}{n}}$$

$$5. \ u_n = \left(\frac{1 - 1/n}{\cos(1/n)}\right)^n$$

$$2. \ u_n = \sqrt{n^4 + 4} - n^2$$

6.
$$u_n = \left(1 + \sqrt{1 + \frac{1}{n}}\right)^n$$

3.
$$u_n = \sqrt[4]{n^4 + 4} - n$$

6.
$$u_n = \left(1 + \sqrt{1 + \frac{1}{n}}\right)^n$$

2.
$$u_n = \sqrt{n^4 + 4} - n^2$$

3. $u_n = \sqrt[4]{n^4 + 4} - n$
4. $u_n = \frac{\cos n - n^2}{2^n + n \sin n}$

Solution:

- 1. D'une part, $n\left(e^{\sin\left(\frac{\pi}{n}\right)}-1\right) \underset{n\to+\infty}{\sim} n\sin\left(\frac{\pi}{n}\right) \underset{n\to+\infty}{\sim} n\frac{\pi}{n} = \pi$. D'autre part : $(\ln n)^{\frac{1}{n}} = e^{\frac{\ln(\ln n)}{n}} e^{\frac{\ln(\ln n)}{n}} = e^{\frac{\ln n}{n} \frac{\ln(\ln n)}{n}} \xrightarrow[n\to+\infty]{} 0$. Finalement $(\ln n)^{\frac{1}{n}} \xrightarrow[n\to+\infty]{} e^0 = 1$ et $:u_n \xrightarrow[n\to+\infty]{} e^{-\frac{\ln(\ln n)}{n}} = e^{\frac{\ln n}{n} \frac{\ln(\ln n)}{n}} \xrightarrow[n\to+\infty]{} e^{-\frac{\ln(\ln n)}{n}} = e^{-\frac{\ln n}{n} \frac{\ln(\ln n)}{n}} \xrightarrow[n\to+\infty]{} e^{-\frac{\ln(\ln n)}{n}} \xrightarrow[n\to+\infty]{} e^{-\frac{\ln(\ln$

$$u_n = \sqrt{n^4 + 4} - n^2 = \frac{\left(\sqrt{n^4 + 4} - n^2\right)\left(\sqrt{n^4 + 4} + n^2\right)}{\sqrt{n^4 + 4} + n^2} = \frac{4}{\sqrt{n^4 + 4} + n^2} \xrightarrow[n \to +\infty]{} \boxed{0}$$

3. Pour tout $n \in \mathbb{N}$:

$$u_n = \sqrt[4]{n^4 + 4} - n = \frac{\left(\sqrt[4]{n^4 + 4} - n\right)\left(\sqrt[4]{n^4 + 4} + n\right)}{\sqrt[4]{n^4 + 4} + n} = \frac{\sqrt{n^4 + 4} - n^2}{\sqrt[4]{n^4 + 4} + n}.$$

En utilisant la question précédente, le numérateur tend vers 0 et il est facile de montrer que le dénominateur tend vers $+\infty$. La suite tend donc vers 0

4.
$$u_n = \frac{\cos n - n^2}{2^n + n \sin n} = \frac{n^2}{2^n} \frac{\frac{\cos n}{n^2} - 1}{1 + \frac{n \sin n}{n^2}}$$
. Mais, en utilisant le théorème des gendarmes et les croissances comparées, on montre facilement que $\frac{\cos n}{n^2} \xrightarrow[n \to +\infty]{} 0$ et $\frac{n \sin n}{n^2} \xrightarrow[n \to +\infty]{} 0$. Par conséquent, comme $n^2 = \underset{n \to +\infty}{o} (2^n)$, il est clair que $u_n \xrightarrow[n \to +\infty]{} 0$.

5. Écrivons $u_n = e^{a_n}$ avec

$$a_n = n \ln \left(\frac{1 - \frac{1}{n}}{\cos \frac{1}{n}} \right) = n \ln \left(1 + \frac{1 - \frac{1}{n} - \cos \frac{1}{n}}{\cos \frac{1}{n}} \right)$$

et comme $1-\cos\frac{1}{n} \underset{n\to+\infty}{\sim} \frac{1}{2n^2} = \underset{n\to+\infty}{o} \left(-\frac{1}{n}\right)$, il vient que

$$\frac{1 - \frac{1}{n} - \cos\frac{1}{n}}{\cos\frac{1}{n}} \underset{n \to +\infty}{\sim} -\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$$

Et par conséquent,

$$a_n \underset{n \to +\infty}{\sim} 1 \text{ et } u_n \to \boxed{\frac{1}{e}}$$

6.
$$u_n = \left(1 + \sqrt{1 + \frac{1}{n}}\right)^n = e^{n \ln\left(1 + \sqrt{1 + \frac{1}{n}}\right)}$$
 et $1 + \sqrt{1 + \frac{1}{n}}$ $\xrightarrow{n \to +\infty}$ 2 donc $n \ln\left(1 + \sqrt{1 + \frac{1}{n}}\right) \xrightarrow{n \to +\infty} +\infty$ et il en est de même de u_n .

Références