Moyennes de Cesáro

Emmanuel Vieillard-Baron¹, Alain Soyeur², and François Capaces³

¹Enseignant en CPGE, Lycée Kléber, Strasbourg ²Enseignant en CPGE, Lycée Pierre de Fermat, Toulouse

28 décembre 2021

Exercice 0.1 *** Moyennes de Cesáro

Soit (u_n) une suite croissante de limite $l \in \mathbb{R}$. Pour tout $n \ge 1$, on pose

$$v_n = \frac{u_1 + u_2 + \dots + u_n}{n}.$$

- 1. Montrer que (v_n) est croissante.
- 2. Montrer que (v_n) est majorée et en déduire que (v_n) est convergente vers un réel L.
- 3. Établir que $\forall n \geqslant 1, \ v_{2n} \geqslant \frac{u_n + v_n}{2}$.
- 4. En déduire que l = L.

La suite (v_n) s'appelle la suite des moyennes de Cesáro de la suite (u_n) et on vient de prouver le théorème de Cesáro dans le cas particulier où la suite (u_n) est croissante.

Solution:

1. Soit $n \in \mathbb{N}^*$.

$$v_{n+1} - v_n = \frac{nu_{n+1} - (u_1 + u_2 + \dots + u_n)}{n(n+1)} = \frac{(u_{n+1} - u_n) + (u_{n+1} - u_{n-1}) + \dots + (u_{n+1} - u_2) + (u_{n+1} - u_0)}{n(n+1)}$$

Mais la suite (u_n) est croissante, et donc $u_{n+1} \ge u_n \ge u_{n-1} \ge \cdots \ge u_2 \ge u_1$. Il s'ensuit que : $(u_{n+1} - u_n) + (u_{n+1} - u_{n-1}) + \cdots + (u_{n+1} - u_2) + (u_{n+1} - u_1) \ge 0$. Enfin : $v_{n+1} - v_n \ge 0$ et (v_n) est bien croissante.

2. La suite (u_n) est croissante de limite $l \in \mathbb{R}$. Donc l majore (u_n) . Il vient alors, pour tout $n \in \mathbb{N}^*$:

$$v_n = \frac{u_1 + u_2 + \dots + u_n}{n} \leqslant \frac{nl}{n} = l.$$

 (v_n) est donc majorée et comme elle est croissante, par application du théorème de la limite monotone, elle converge vers un réel $L \leq l$.

3. Soit $n \ge 1$.

$$v_{2n} = \frac{u_1 + \dots + u_n + u_{n+1} + \dots + u_{2n}}{2n} = \frac{u_1 + \dots + u_n}{2n} + \frac{u_{n+1} + \dots + u_{2n}}{2n} = \frac{v_n}{2} + \frac{u_{n+1} + \dots + u_{2n}}{2n}$$

Mais comme (u_n) est croissante, pour tout $i \in [1, n]$, $u_{n+i} \geqslant u_n$ et donc :

$$\frac{u_{n+1}+\cdots+u_{2n}}{2n}\geqslant \frac{u_n+\cdots+u_n}{2n}=\frac{nu_n}{2n}=\frac{u_n}{2}.$$

Finalement, on a bien : $v_{2n} \ge \frac{u_n + v_n}{2}$

4. Par passage à la limite dans l'inégalité précédente, on obtient : $L\geqslant \frac{L+l}{2}$ ce qui amène $L\geqslant l$ et comme on sait que $L\leqslant l$ alors L=l.

Références