Encore une preuve de $(l^{\infty}(\mathbb{N}))' \neq l^{1}(\mathbb{N})$

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

18 avril 2024

Exercice 0.1 \blacksquare \bigstar Encore une preuve de $(l^{\infty}(\mathbb{N}))' \neq l^{1}(\mathbb{N})$

1. Démontrer l'existence d'une forme linéaire continue L sur $l^{\infty}(\mathbb{N})$ vérifiant

$$\left(u=(u_n)_n\in l^{\infty}(\mathbb{N}) \text{ et } \lim_n u_n=l\in\mathbb{R}\right) \implies L(u)=l.$$

2. En déduire que $(l^{\infty}(\mathbb{N}))' \neq l^{1}(\mathbb{N})$.

Solution:

- 1. Considérons le sous-espace \mathscr{C} de $l^{\infty}(\mathbb{N})$ des suites convergentes. Sur \mathscr{C} , la forme linéaire L qui à $u = (u_n)_n \in \mathscr{C}$ associe $L(u) = \lim_n u_n$ est une forme linéaire continue (de norme 1). Par Hahn-Banach, on peut prolonger L en une forme linéaire continue de norme 1 sur $l^{\infty}(\mathbb{N})$, c'est la limite de Banach et ce prolongement répond à la question.
- 2. Supposons que $(l^{\infty}(\mathbb{N}))' = l^{1}(\mathbb{N})$ avec la question précédente, il existerai $\alpha = (\alpha_{n})_{n} \in l^{1}(\mathbb{N})$ tel que

$$L(u) = \sum_{n>0} \alpha_n u_n, \quad \forall n \in \mathbb{N}.$$

Mais en appliquant cette formule aux suite $\delta_k = (\delta_n^k)_n \in l^{\infty}(\mathbb{N})$ on obtient $\alpha_k = 0, \ \forall k \in \mathbb{N}$, soit $L \equiv 0$ ce qui est absurde.

Références