Image de $L^2(\mathbb{R}) \setminus L^1(\mathbb{R})$ par la tranformée de Fourier

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

7 avril 2023

Exercice 0.1 \blacksquare \bigstar \blacksquare Image de $L^2(\mathbb{R})\setminus L^1(\mathbb{R})$ par la tranformée de Fourier

Sous quelles circonstances existe-t-il une fonction $f \in L^2(\mathbb{R})$ telle que $f \notin L^1(\mathbb{R})$, mais $\mathscr{F}(f) \in L^1(\mathbb{R})$?

Donner un exemple d'une telle fonction.

Solution : La transformée de Fourier est un isomorphisme (topologique) de $L^2(\mathbb{R})$. f répondra donc au problème, si et seulement si $\mathscr{F}(f) \in L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ et $\mathscr{F}(f) \notin \mathscr{F}(L^1(\mathbb{R}))$. En particulier, ceci va se produire pour toute fonction $f \in L^2(\mathbb{R})$ vérifiant $\mathscr{F}(f) \in (L^1(\mathbb{R}))$ mais $\mathscr{F}(f) \notin C_0(\mathbb{R})$.

- Pour exhiber un tel objet, considérons une fonction

$$g \in (L^2(\mathbb{R}) \cap L^1(\mathbb{R})) \setminus C_0(\mathbb{R})$$

et soit f la transformée de Fourier inverse de g (prendre $f = \mathscr{F}(g)$ marchera aussi puisque $\mathscr{F}(f)(t) = g(-t)$). Par exemple soit $g(t) = \chi_{[-1,1]}(t)$ la fonction indicatrice de l'intervalle [-1,1], on a

$$f(x) = \mathscr{F}^{-1}(g)(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(t)e^{itx}dt = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{itx}dt = \sqrt{\frac{2}{\pi}} \frac{\sin(x)}{x}.$$

La formule d'inversion de Fourier dans $L^2(\mathbb{R})$ implique que $\mathscr{F}(f)=g$ qui est dans $L^1(\mathbb{R})$ comme désiré; on vérifie facilement que $f \notin L^1(\mathbb{R})$ ou plus simplement que $\mathscr{F}(f)=g$ n'est pas continue.

Références