Convergence uniforme et convergence continue

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

11 août 2023

Exercice $0.1 \longrightarrow \bigstar$ Convergence uniforme et convergence continue

[1]

Soit $A \subset \mathbb{R}$ une partie non vide (ou plus généralement d'un espace vectoriel normé) et $(f_n)_n$ une suite d'applications de A dans \mathbb{K} . On dira que la suite $(f_n)_n$ converge continuement vers $f: A \to \mathbb{K}$ si pour tout $x \in A$, pour toute suite $(x_n)_n \subset A$ convergente vers x la suite $(f_n(x_n))_n$ converge vers f(x).

- 1. Montrer que la convergence continue implique la convergence simple.
- 2. Soit $(f_n)_n$ une telle suite, $x \in A$ et $(x_n)_n$ dans A convergente vers x. Montrer que pour toute sous-suite $(f_{n_k})_k$

$$\lim_{k \to \infty} f_{n_k}(x_k) = f(x).$$

- 3. Si $(f_n)_n$ converge continuement vers f sur A, montrer que f est continue sur A (**même** si les f_n ne sont pas continues!)
- 4. Montrer que toute suite $(f_n)_n$ uniformément convergente sur A vers une fonction $f \in \mathscr{C}(A,\mathbb{K})$ converge continuement sur A. La réciproque est-elle vraie?
- 5. Soit $(f_n)_n$ une suite de fonctions définies sur une partie compacte K. Montrer que les propriétés suivantes sont équivalentes.
 - La suite $(f_n)_n$ est uniformément convergente vers $f \in \mathscr{C}^0(K)$.
 - La suite $(f_n)_n$ est continuement convergente sur K vers f.

Solution:

1. Si la suite $(f_n)_n$ converge continuement vers f s ur A et si pour $x \in A$ on considère la suite constante $x_n = x$ alors :

$$f(x) = \lim_{n \to \infty} f_n(x_n) = \lim_{n \to \infty} f_n(x)$$

i.e. $(f_n)_n$ est simplement convergente sur A vers f.

2. Soit donc $(f_{n_k})_k$ une sous-suite de la suite $(f_n)_n$ et $(x_n)_n$ une suite dans A convergente vers $x \in A$. Considérons alors la suite $(y_m)_m$ définie par

$$y_m = \begin{cases} x_1 & pour & 1 \le m \le n_1, \\ x_2 & pour & n_1 < m \le n_2, \\ \dots & \dots \\ x_k & pour & n_k < m \le n_{k+1} \\ \dots & \dots \end{cases}$$

La suite $(y_m)_m$ est bien entendu encore convergente vers x et on a donc

$$f(x) = \lim_{m \to \infty} f_m(x_m) \implies f(x) = \lim_{k \to \infty} f_{n_k}(y_{n_k}) = \lim_{k \to \infty} f_{n_k}(x_k).$$

3. Avec la première question, si $(f_n)_n$ converge continuement vers f sur A, elle converge simplement sur A vers f. Montrons que f est continue sur A: soit $x \in A$, $(x_n)_n \subset A$ une suite convergente vers x. Pour tout $\varepsilon > 0$, par la convergence de $(f_n(x_1))_n$ vers $f(x_1)$ il existe n_1 (qui à priori dépend de x_1) tel que

$$|f_{n_1}(x_1) - f(x_1)| \le \frac{\varepsilon}{2}.$$

De même, il existe $n_2 > n_1$ tel que

$$|f_{n_2}(x_2) - f(x_2)| \le \frac{\varepsilon}{2}.$$

En réitérant ce processus, on construit une suite strictement croissante d'entiers vérifiant

$$|f_{n_k}(x_k) - f(x_k)| \le \frac{\varepsilon}{2} \quad \forall k \in \mathbb{N}.(1)$$

Mais avec la question précédente $\lim_{k\to\infty} f_{n_k}(x_k) = f(x)$, si bien qu'il existe aussi un entier k_0 tel que

$$|f_{n_k}(x_k) - f(x)| \le \frac{\varepsilon}{2}, \quad \forall k \ge k_0.(2)$$

Finalement (1) et (2) assurent que

$$|f(x_k) - f(x)| \le |f_{n_k}(x_k) - f(x_k)| + |f_{n_k}(x_k) - f(x)| \le \varepsilon \quad \forall k \ge k_0$$

et f est continue au point x, elle est donc continue sur A.

4. - Supposons maintenant que la suite $(f_n)_n$ converge uniformément sur A vers une fonction continue f (les fonctions f_n n'étant pas continues, l'hypothèse de continuité sur f est essentielle vu la question précédente) et montrons que la convergence est continue sur A. Soit donc $(x_n)_n \subset A$ une suite convergente vers $x \in A$. Soit $\varepsilon > 0$, par convergence uniforme sur A nous avons

$$|f_n(x_n) - f(x_n)| \le \sup_{y \in A} |f_n(y) - f(y)| \le \frac{\varepsilon}{2}, \quad \forall n \ge n_0.(3)$$

Et par continuité de f

$$|f(x_n) - f(x)| \le \frac{\varepsilon}{2}, \quad \forall n \ge n_1.(4)$$

Ainsi, pour $n \ge \max\{n_0, n_1\}$, nous avons vu (3) et (4)

$$|f_n(x_n) - f(x)| \le |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)| \le \frac{\varepsilon}{2}$$

d'où la convergence continue sur A.

- La réciproque est fausse. Considérons par exemple A =]0,1[et $f_n(x) = x^n$. Il est facile de vérifier que la suite $(f_n)_n$ simplement convergente sur]0,1[vers la fonction f identiquement nulle n'est pas uniformément convergente sur]0,1[. Toutefois cette suite converge continuement sur]0,1[vers f car pour toute suite $(x_n)_n \subset]0,1[$ convergente vers $x \in]0,1[$ il existe 0 < a < 1 tel que $0 < x_n < a$ de sorte que

$$|f_n(x_n) - f(x)| = |f_n(x_n)| \le a^n$$

et donc

$$\lim_{n \to \infty} f_n(x_n) = 0 = f(x).$$

- 5. -la condition nécéssaire (⇒) à été établie lors de la question précédente.
 - Pour la condition suffisante (\Leftarrow), avec la question 2), nous savons déja que la limite f est continue sur K. Supposons maintenant que notre suite $(f_n)_n$ ne converge pas uniformément sur K: il existe donc $\varepsilon_0 > 0$, une suite $(n_k)_k$ d'entiers et une suite $(x_k)_k$ dans K tels que

$$\forall k \in \mathbb{N} : |f_{n_k}(x_k) - f(x_k)| > \varepsilon_{0}.(5)$$

Comme K est compact on peut supposer (quitte à extraire une sous-suite) que la suite $(x_k)_k$ converge vers $x \in K$. Avec la question 1), il existe alors $N_0 \in \mathbb{N}$ tel que

$$|f_{n_k}(x_k) - f(x)| \le \frac{\varepsilon_0}{3}, \quad \forall n \ge N_0.(6)$$

Par continuité de f, il existe $N_1 \in \mathbb{N}$ tel que

$$|f(x_k) - f(x)| \le \frac{\varepsilon_0}{3}, \quad \forall n \ge N_1, (7)$$

si bien qu'en combinant (5), (6) et (7) on obtient pour n assez grand

$$|\varepsilon_0| \le |f_{n_k}(x_k) - f(x_k)| \le |f_{n_k}(x_k) - f(x)| + |f(x) - f(x_k)| \le \frac{2\varepsilon_0}{3}$$

ce qui est absurde.

Références

[1] W.J. Kaczor and M.T. Nowak. Problems in Mathematical Analysis : Sequences and Series, volume 1 of Student Mathe- matical Library. AMS, 2001.