Séries entières et convergence uniforme

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

7 avril 2023

Exercice 0.1 ★ Séries entières et convergence uniforme

Pour une série entière $\sum_n a_n z^n$ de rayon de convergence $R \ge 1$, montrer que les propriétés suivantes sont équivalentes

- 1. La série $\sum_{n} a_n z^n$ converge uniformément sur D(0,1).
- 2. La série $\sum_{n} a_n z^n$ converge uniformément sur $\overline{D(0,1)}$.
- 3. La série $\sum_n a_n z^n$ converge uniformément sur C(0,1).

Solution:

1. (1) \Longrightarrow 2)): C'est la conséquence d'un corollaire presque immédiat (mais essentiel) du critére de Cauchy uniforme : « Soient X un espace topologique, E un espace de Banach; alors toute suite de fonctions $(f_n)_n \subset \mathscr{C}(X,B)$ qui converge uniformément sur une partie $Y \subset X$ converge encore uniformément sur \overline{Y} . » Comme justification il suffit de remarquer que par continuité des applications f_n , le critère de Cauchy uniforme

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} : m, n \ge n_{\varepsilon} \implies \sup_{x \in Y} \|f_n(x) - f_m(x)\|_E \le \varepsilon$$

implique

$$\forall \varepsilon > 0, \ \exists n_{\varepsilon} : m, n \ge n_{\varepsilon} \implies \sup_{x \in \overline{Y}} \|f_n(x) - f_m(x)\|_E \le \varepsilon$$

- 2. Les implications (2) \implies)3) et (3) \implies 2)) sont évidentes.
- 3. Il suffit donc par exemple d'établir (3) \Longrightarrow 2)): Par convergence uniforme sur le cercle unité, pour tout $\varepsilon > 0$, il existe $n_{\varepsilon} \in \mathbb{N}$ tel que $n \geq n_{\varepsilon} \Longrightarrow |s_n(e^{i\theta})| = |\sum_{n_{\varepsilon}}^n a_k e^{ik\theta}| < \varepsilon$. On va effectuer une transformation d'Abel : soit $0 \leq r \leq 1$ et $n \geq n_{\varepsilon} + 1$, pour tout $\theta \in \mathbb{R}$

$$\left| \sum_{n_{\varepsilon}+1}^{n} a_{k} r^{k} e^{ik\theta} \right| = \left| \sum_{n_{\varepsilon}+1}^{n} r^{k} (s_{k}(e^{i\theta}) - s_{k-1}(e^{i\theta})) \right|$$

$$= \left| -r^{n_{\varepsilon}+1} s_{n_{\varepsilon}}(e^{i\theta}) + r^{n} s_{n}(e^{i\theta}) + \sum_{n_{\varepsilon}+1}^{n} s_{k}(e^{i\theta}) (r^{k} - r^{k+1}) \right|$$

$$\leq \left| r^{n_{\varepsilon}+1} s_{n_{\varepsilon}}(e^{i\theta}) \right| + \left| r^{n} s_{n}(e^{i\theta}) \right| + \sum_{n_{\varepsilon}+1}^{n} (r^{k} - r^{k+1}) \left| s_{k}(e^{i\theta}) \right|$$

$$\leq \varepsilon \left[r^{n_{\varepsilon}+1} + r^{n} + \sum_{n_{\varepsilon}+1}^{n} (r^{k} - r^{k+1}) \right]$$

$$\leq 2\varepsilon r^{n_{\varepsilon}+1} \leq 2\varepsilon - 1$$

Le critère de Cauchy uniforme est donc bien vérifié sur $\overline{D(0,1)}$, soit 2). **Remarque :** Le candidat à l'agrégation externe peut régler l'implication « délicate » (3)

 \implies 2)) trés simplement en invoquant le principe du maximum.

Références