Toute application convexe et majorée sur \mathbb{R} est constante

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

11 août 2023

Exercice 0.1 \bigstar Toute application convexe et majorée sur $\mathbb R$ est constante

Soit $f: \mathbb{R} \to \mathbb{R}$ deux fois dérivable, convexe et majorée : montrer que f est constante.

Solution : Si f n'est pas constante, on peut trouver $a \in \mathbb{R}$ tel que $f'(a) \neq 0$ et la formule de Taylor-Lagrange nous donne pour

$$x \in \mathbb{R}, \ \exists \zeta_x \in (a, x) : f(x+a) = f(a) + xf'(a) + \frac{x^2}{2}f''(\zeta_x) \ge f(a) + xf'(a)$$

la dernière inégalité résultant du fait que

 $(f \text{ deux fois dérivable et convexe}) \implies (f'' \ge 0).$

Si par exemple f'(a) > 0 on obtient alors une contradiction en faisant tendre x vers $+\infty$ (et vers $-\infty$ si f'(a) < 0...)

Remarques : \Rightarrow Si la fonction est seulement convexe le résultat bien entendu subsiste, il faut juste être un peu plus délicat : si f est non constante, soient a < b vérifiant f(a) < f(b) ou f(a) > f(b) et pour tout a < b < x

$$f(b) = f\left(\frac{x-b}{x-a}a + \frac{b-a}{x-a}x\right)$$

$$\leq \frac{x-b}{x-a}f(a) + \frac{b-a}{x-a}f(x),$$

soit

$$\forall x > b > a,$$
 $f(x) \ge \frac{x-a}{b-a}f(b) - \frac{x-b}{b-a}f(a).$ (\(\phi\))

Si f(b) > f(a) il existe $\delta > 0$ tel que $f(b) = f(a) + \delta$ et (\bigstar) devient pour tout x > b:

$$f(x) \ge \frac{x-a}{b-a}f(b) - \left(\frac{x-a}{b-a} + \frac{a-b}{b-a}\right)f(a)$$

$$= \frac{x-a}{b-a}\left(f(b) - f(a)\right) + f(a)$$

$$\ge \frac{x-a}{b-a}\delta + f(a) := h(x)$$

la fonction h est non majorée sur $]b, +\infty[$, il en est donc de même pour f d'où la contradiction. On procède de manière analogue si f(b) < f(a) en établissant pour x < a < b avec $\delta := f(a) - f(b)$

$$f(x) \ge \frac{b-x}{b-a}\delta + f(b)$$

 \subset Ce résultat ne subsiste plus si on remplace $\mathbb R$ par un intervalle de la forme $(a,+\infty[$ (resp. $]-\infty,a))$, il suffit par exemple de considérer $f(x)=e^{-x}$ (resp. $f(x)=e^{x}$).

Références