Une inéquation fonctionnelle

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

11 août 2023

Exercice $0.1 \longrightarrow \bigstar$ Une inéquation fonctionnelle

Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ vérifiant

$$\forall x \in \mathbb{R}, \ q \in \mathbb{Q} : |f(x) - f(q)| \le |x - q|^2.$$

Solution : Soit f une solution éventuelle. Pour a < b deux rationnels, $n \in \mathbb{N}^*$ et $i \in \{0, 1, ..., n\}$ posons $a_i = a + i \frac{b-a}{n}$. Il est clair que les réels a_i sont rationnels et l'inégalité triangulaire nous donne

$$|f(a) - f(b)| \le \sum_{i=0}^{n-1} |f(a_i) - f(a_{i-1})| \le 7 \sum_{i=0}^{n-1} |a_i - a_{i-1}|^2 = 7 \frac{(b-a)^2}{n}.$$

En faisant tendre maintenant n vers $+\infty$ on en déduit que f(a) = f(b): f est donc constante sur \mathbb{Q} .

Montrons que est constante sur \mathbb{R} : On a déja f(q) = r pour tout $q \in \mathbb{Q}$; pour $x \in \mathbb{R}$ considérons une suite de rationnels $(q_n)_n$ qui converge vers x, alors

$$|f(x) - r| = |f(x) - f(q_n)| \le 7|x - q_n|^2 \underset{n \to +\infty}{\longrightarrow} 0.$$

i.e. f(x) = r : f est bien constante. Réciproquement, il est facile de vérifier que les fonctions constantes sont solutions du problème.

Références