L'équation fonctionnelle
$$f^2(x) = \int_0^x (f^2(t) + f'^2(t)) dt + 2007.$$

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

24 juin 2023

Exercice 0.1 \bigstar L'équation fonctionnelle $f^2(x) = \int_0^x \left(f^2(t) + f'^2(t)\right) dt + 2007.$ [1]

Déterminer les fonctions $f \in \mathscr{C}^1(\mathbb{R})$ vérifiant

$$f^{2}(x) = \int_{0}^{x} (f^{2}(t) + f'^{2}(t)) dt + 2007, \quad x \in \mathbb{R}.(\star)$$

Solution : Les deux fonctions de part et d'autre de l'égalité (\star) seront égales si elles ont même dérivée et coïncident à l'origine. Dérivons (\star) , on tombe sur

$$2f(x)f'(x) = f^2(x) + f'^2(x), \quad x \in \mathbb{R},$$

ou encore $(f-f')^2(x)=0, \ x\in\mathbb{R}$, soit f=f' et finalement $f(x)=Ce^x, \ x\in\mathbb{R}$. Enfin l'évaluation à l'origine donne $f^2(0)=2007$; les solutions de l'équation fonctionnelle (\star) sont les deux fonctions $f(x)=\pm\sqrt{2007}e^x$.

Références

 K.S.Kedlaya, B.Poonen, and R.Vakil. The William Lowell Putnam competition 1985-2000. MAA Problem Books. M.A.A., 2002.