Deux sous-espaces fermés dont la somme ne l'est pas

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

11 août 2023

Exercice 0.1 ★ Deux sous-espaces fermés dont la somme ne l'est pas

Soit $(e_n)_{n>0}$ une base hilbertienne d'un espace de Hilbert séparable. Pour $n \in \mathbb{N}$ on pose

$$x_n = e_{2n}$$
 et $y_n = \sqrt{1 - 4^{-n}}e_{2n} + 2^{-n}e_{2n+1}$.

On désigne par X le sous-espace vectoriel fermé engendré par la suite de vecteurs $(x_n)_{n\geq 0}$ (i.e. $X = \overline{\text{vect}(x_n, n \geq 0)}$) et par Y celui engendré par la suite $(y_n)_{n\geq 0}$.

- 1. Montrer que $(x_n)_{n\geq 0}$ et $(y_n)_{n\geq 0}$ sont des bases hilbertiennes de X et Y respectivement. Montrer que $X\cap Y=\{0_H\}$ puis que $\overline{X+Y}=H$.
- 2. Montrer que la série $\sum_{n} 2^{-n} e_{2n+1}$ converge dans H mais que sa somme $v = \sum_{n} 2^{-n} e_{2n+1}$ n'appartient pas à X + Y. En déduire que X + Y n'est pas fermé dans H.

Solution:

1. Extraite de la base orthonormée $(e_n)_{n\geq 0}$ la suite $(x_n)_{n\geq 0}$ est orthonormée. Pour la suite $(y_n)_{n\geq 0}$ on a : $||y_n||^2 = (1-4^{-n}) + (2^{-n})^2 = 1$; et pour $n \neq m$ les vecteurs e_{2n} , e_{2n+1} sont orthogonaux aux vecteurs e_{2m} , e_{2m+1} car les ensembles $\{2n, 2n+1\}$ et $\{2m, 2m+1\}$ sont disjoints : la suite $(y_n)_{n\geq 0}$ est aussi orthonormée. Ce sont des bases hilbertiennes des espaces X et Y respectivement, car dans un esapce de Hilbert, toute suite orthonormée est une base hilbertienne de l'espace vectoriel fermé qu'elle engendre.

Soit $x = \sum_{n \geq 0} c_k e_k \in H$. Si $x \in X \cap Y$, de la question précédente nous avons aussi les developpements $x = \sum_{n \geq 0} a_n x_n = \sum_{n \geq 0} b_n y_n$. Calculons c_{2k+1} :

$$c_{2k+1} = \langle x, e_{2k+1} \rangle = \langle \sum_{n \geq 0} a_n x_n, e_{2k+1} \rangle = \sum_{n \geq 0} a_n \langle x_n, e_{2k+1} \rangle = 0,$$

puisque $\langle x_n, e_{2k+1} \rangle = \langle e_{2n}, e_{2k+1} \rangle = 0$. Mais on a aussi

$$c_{2k+1} = \langle x, e_{2k+1} \rangle = \langle \sum_{n \geq 0} b_n y_n, e_{2k+1} \rangle = \sum_{n \geq 0} b_n \langle y_n, e_{2k+1} \rangle = \langle y_k, e_{2k+1} \rangle = 2^{-k} b_k$$

ce qui montre que $b_k = 0$, $\forall k \in \mathbb{N}$ et donc $x = 0_H$.

Pour vérifier la densité de X+Y dans H il est suffisant de montrer que X+Y contient la base $(e_n)_n$; c'est bien le cas puisque pour tout $n\in\mathbb{N}$ $e_{2n}=x_n\in X+Y$ et $e_{2n+1}=2^n(y_n-\sqrt{1-4^{-n}})\in X+Y$.

2. La série $\sum_n 2^{-n} e_{2n+1}$ est normalement convergente, donc convergente dans l'espace complet H. Si le vecteur $v = \sum_n 2^{-n} e_{2n+1}$ était dans X+Y on aurait $v = x+y = \sum_{n\geq 0} a_n x_n + \sum_{n\geq 0} b_n y_n$. En particulier pour $k\geq 0$

$$2^{-k} = \langle v, e_{2k+1} \rangle = 2^{-k} b_k$$

ce qui impose $b_k=0,\ \forall\,k\in\mathbb{N},$ mais ceci est impossible car la série définissant y serait divergente.

Ainsi X+Y est strictement inclu dans H, comme $\overline{X+Y}=H,\,X+Y$ ne peut être fermé dans H.

Références