Combinatoire et matrices

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

7 avril 2023

Exercice $0.1 \longrightarrow \bigstar$ Combinatoire et matrices

Soient $A_0 = B_0 = ((1)) \in M_1(\mathbb{R})$. Pour $n \geq 1$ on définit les suites de matrices par

$$A_n = \begin{pmatrix} A_{n-1} & A_{n-1} \\ A_{n-1} & B_{n-1} \end{pmatrix}, \text{ et } B_n = \begin{pmatrix} A_{n-1} & A_{n-1} \\ A_{n-1} & 0 \end{pmatrix} \in M_{2n}(\mathbb{R}).$$

Montrer que

$$S(A_n^{k-1}) = S(A_k^{n-1}), \forall n, k \in \mathbb{N}^*$$

avec $S(M) = \sum_{1 \le i,j \le n} m_{ij}$ où $M = ((m_{ij}))$.

Solution: L'astuce (redoutable) consiste à donner un « sens combinatoire » à la quantité $S(A_n^{k-1})$. Pour cela soit T un tableau $n \times k$ à coefficients 0 et 1 (i.e. un élément de $M_{n,k}(0,1)$) vérifiant la propriété suivante : « il n'existe dans T aucune sous matrice 2×2 constituée uniquement de 1 » et soit $F_{n,k}$ le nombre de tels tableaux.

Chaque ligne d'un tableau correspond à un entier entre 0 et $2^n - 1$ écrit en base 2. $F_{n,k}$ est donc le nombre de k-uplets d'entiers dont toute paire d'entiers consécutifs correspond à un tableau $n \times 2$ sans sous-matrice . 2×2 constituée uniquement de 1.

Soient $\overline{i_n i_{n-1} \dots i_1}$, $\overline{j_n j_{n-1} \dots j_1}$ les écritures en base 2 de deux entiers $i, j \in \{0, \dots, 2^n - 1\}$.

- Deux cas sont à envisager : $-Si \ i_n j_n = 0 \ alors \ i_n i_{n-1} \dots i_1 \ \text{et} \ \overline{j_n j_{n-1} \dots j_1} \ \text{sont consécutifs si et seulement si} \ \overline{i_{n-1} \dots i_1}$ et $\overline{j_{n-1} \dots j_1}$ le sont.
- $-Si \, i_n j_n = \frac{1}{n} \, \text{alors} \, \overline{i_n i_{n-1} \dots i_1} \, \text{et} \, \overline{j_n j_{n-1} \dots j_1} \, \text{sont cons\'ecutifs si et seulement si } i_{n-1} j_{n-1} = 0$ et $\overline{i_{n-2} \dots i_1} \, \text{et} \, \overline{j_{n-2} \dots j_1} \, \text{le sont.}$

Références