Nombre de matrices symétriques à coefficients dans $\{0,1\}$ et série entières

Patrice Lassère¹

¹, Université Paul Sabatier, Toulouse

11 août 2023

Exercice 0.1 Mombre de matrices symétriques à coefficients dans {0,1} et série entières (Putnam, 1967).

Soit u_n le nombre de matrices $n \times n$, symétriques à coefficients dans $\{0,1\}$ avec exactement un 1 sur chaque ligne (on notera S_n cet ensemble). Avec $u_0 := 1$, montrer que

$$u_{n+1} = u_n + nu_{n-1}, \quad \sum_{n \ge 0} \frac{u_n x^n}{n!} = \exp(x) + \frac{x^2}{2} := f(x).$$

Solution: Il y a une correspondance bijective entre S_n et l'ensemble des matrices $M=((m_{ij})) \in S_{n+1}$ telles que $m_{11}=1$. De même si $i \geq 2$, il y aussi une correspondance bijective entre S_{n-1} et les matrices $M \in S_{n+1}$ telles que $m_{1i}=1$ (en effet M étant symétrique $m_{i1}=1$, il n'y a donc que des zéros sur les autres coefficients des i-èmes lignes et colonnes : la donnée de M correspond donc à celle de la matrice $(n-1) \times (n-1)$ déduite de M en lui supprimant ses ièmes lignes et colonnes). De ces deux correspondances et puisque $u_0=u_1=1$ on a

$$u_{n+1} = u_n + nu_{n-1}, \quad n \ge 1.$$

Pour la seconde partie, il suffit de remarquer que f est développable en série entière $\sum_n v_n x^n$ sur \mathbb{R} , puis que les coefficients v_n satisfont à la même relation de récurrence que les u_n pour conclure facilement.

Références